Skip to main content
Log in

Community Structure, Abundance, and Activity of Methanotrophs in the Zoige Wetland of the Tibetan Plateau

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The Zoige wetland of the Tibetan Plateau is a high-altitude tundra wetland and one of the biggest methane emission centers in China. In this study, methanotrophs with respect to community structure, abundance, and activity were investigated in peat soils collected in the vicinity of different marshland plants that dominate different regions of the wetland, including Polygonum amphibium, Carex muliensis, and Eleocharis valleculosa (EV). 16S rRNA gene and particulate methane monooxygenase gene (pmoA) clone library sequence data indicated the presence of methanotrophs with two genera, Methylobacter and Methylocystis. Methylococcus, like pmoA gene sequences, were also retrieved and showed low similarity to those from Methylococcus spp. and thus indicates the existence of novel methanotrophs in the Zoige wetland. Quantitative polymerase chain reaction (qPCR) assays were used to measure the abundance of methantrophs and detected 107 to 108 of total pmoA gene copies per gram dry weight of soil in the three marshes. Group-specific qPCR and reverse transcriptase qPCR results found that the Methylobacter genus dominates the wetland, and Methylocystis methanotrophs were less abundant, although this group of methanotrophs was estimated to be more active according to mRNA/DNA ratio. Furthermore, EV marsh demonstrated the highest methanotrophs abundance and activity among the three marshes investigated. Our study suggests that both type I and type II methanotrophs contribute to the methane oxidation in the Zoige wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. IPCC (2001) Climate change 2001: the scientific basis. New York: Cambridge University

  2. IPCC (2007) Climate Change 2007: The physical science basis. summary for policymakers. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Paris: Summary for Policymakers formally approved at the 10th Session of Working Group I of the IPCC

  3. Roslev P, King GM (1996) Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiol Ecol 19:105–115

    Article  CAS  Google Scholar 

  4. Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  5. Wagner D, Liebner S (2009) Global warming and carbon dynamics in permafrost soils: methane production and oxidation.Permafrost soils: 219–236

  6. Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group-I methanotrophs. Int J Syst Bacteriol 43:735–753

    Article  Google Scholar 

  7. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    PubMed  CAS  Google Scholar 

  8. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  PubMed  CAS  Google Scholar 

  9. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878

    Article  PubMed  CAS  Google Scholar 

  10. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. P Natl Acad Sci USA 105:300–304

    Article  CAS  Google Scholar 

  11. Bowman J (2006) The methanotrophs—the families Methylococcaceae and Methylocystaceae. Prokaryotes 5:266–289

  12. Bowman JP (1999) The methanotrophs—the families Methylococcaceae and Methylocystaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes. Springer, New York, pp 266–289

    Google Scholar 

  13. McDonald I, Murrell J (1997) The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 156:205–210

    Article  PubMed  CAS  Google Scholar 

  14. Dumont MG, Murrell JC (2005) Community-level analysis: key genes of aerobic methane oxidation. Method Enzymol 397:413–427

    Article  CAS  Google Scholar 

  15. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J of Syst Evol Microbiol 61(Pt 10):2456–2463

    Article  CAS  Google Scholar 

  16. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp nov., a new methane-oxidizing acidophilic bacterium from peat bags, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    Article  PubMed  CAS  Google Scholar 

  17. Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423–2429

    Article  PubMed  CAS  Google Scholar 

  18. Ding WX, Cai ZC (2007) Methane emission from natural wetlands in China: summary of years 1995–2004 studies. Pedosphere 17:475–486

    Article  CAS  Google Scholar 

  19. Ding WX, Cai ZC, Wang DX (2004) Preliminary budget of methane emissions from natural wetlands in China. Atmos Environ 38:751–759

    Article  CAS  Google Scholar 

  20. Jin HJ, Wu J, Cheng GD, Tomoko N, Sun GY (1999) Methane emissions from wetlands on the Qinghai–Tibet Plateau. Chin Sci Bull 44:2282–2286

    Article  CAS  Google Scholar 

  21. Van der Nat FJWA, Middelburg JJ (1998) Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquat Bot 61:95–110

    Article  Google Scholar 

  22. Popp TJ, Chanton JP, Whiting GJ, Grant N (2000) Evaluation of methane oxidation in therhizosphere of a Carex dominated fen in northcentral Alberta, Canada. Biogeochemistry 51:259–281

    Article  CAS  Google Scholar 

  23. Yun J, Ma A, Li Y, Zhuang G, Wang Y, Zhang H (2010) Diversity of methanotrophs in Zoige wetland soils under both anaerobic and aerobic conditions. J Environ Sci 22:1232–1238

    Article  CAS  Google Scholar 

  24. Zhou HM, Zen LX, Yu GN, Liu DC (1999) Analysis, utilization and protection of wetland resources in the Northwest Plateau of Sichuan Province. Southwest China Journal of Agricultural Sciences 12:69–74

    Google Scholar 

  25. Wang MH (1987) Pollen composition, paleovegetation and paleoclimate of peatlands in Zoige Plateau. Scientia Geographica Sinica 18:145–155

    Google Scholar 

  26. Yang F, Dong Z (1993) Study of the environment and ecology of wetland, meadow in Zoige Plateau (in Chinese). J Sichuan Grassland 14:1–7

    Google Scholar 

  27. Horz HP, Yimga MT, Liesack W (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microb 67:4177–4185

    Google Scholar 

  28. Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106

    PubMed  CAS  Google Scholar 

  29. Raeymaekers L (2000) Basic principles of quantitative PCR. Mol Biotechnol 15:115–122

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microb 66:4605–4614

    Article  CAS  Google Scholar 

  31. Stubner S (2002) Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen (TM) detection. J Microbiol Meth 50:155–164

    Article  CAS  Google Scholar 

  32. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  33. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  34. Chen Y, Dumont MG, Cebron A, Murrell JC (2007) Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ Microbiol 9:2855–2869

    Article  PubMed  CAS  Google Scholar 

  35. Wise M, McArthur J, Shimkets L (1999) Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microb 65:4887

    CAS  Google Scholar 

  36. Wartiainen I, Hestnes AG, Svenning MM (2003) Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway)—denaturing gradient gel electrophoresis analysis of soil DNA and enrichment cultures. Can J Microbiol 49:602–612

    Article  PubMed  Google Scholar 

  37. Newby D, Reed D, Petzke L, Igoe A, Delwiche M, Roberto F, McKinley J, Whiticar M, Colwell F (2004) Diversity of methanotroph communities in a basalt aquifer. FEMS Microbiol Ecol 48:333–344

    Article  PubMed  CAS  Google Scholar 

  38. Carini S, Bano N, LeCleir G, Joye S (2005) Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environ Microbiol 7:1127–1138

    Article  PubMed  CAS  Google Scholar 

  39. Liebner S, Rublack K, Stuehrmann T, Wagner D (2009) Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microbial Ecol 57:25–35

    Article  Google Scholar 

  40. Cebron A, Bodrossy L, Chen Y, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiol Ecol 62:12–23

    Article  PubMed  CAS  Google Scholar 

  41. Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Yongcui Deng from the Graduate University of the Chinese Academy of Sciences for providing assistance with soil sampling and Dr. Fei Lu from the State Key Laboratory of Urban and Regional Ecology, Chinese Academy of Sciences for assistance with methane measurements. This study was supported by a knowledge innovation grant of the Chinese Academy of Sciences (kzcx2-yw-418-03), the China Postdoctoral Science Foundation (20100470561), and the National Natural Science Foundation of China (41001151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, J., Zhuang, G., Ma, A. et al. Community Structure, Abundance, and Activity of Methanotrophs in the Zoige Wetland of the Tibetan Plateau. Microb Ecol 63, 835–843 (2012). https://doi.org/10.1007/s00248-011-9981-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9981-x

Keywords

Navigation