Skip to main content
Log in

Aerobic Methanotroph Diversity in Sanjiang Wetland, Northeast China

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Aerobic methanotrophs present in wetlands can serve as a methane filter and thereby significantly reduce methane emissions. Sanjiang wetland is a major methane source and the second largest wetland in China, yet little is known about the characteristics of aerobic methanotrophs in this region. In the present study, we investigated the diversity and abundance of methanotrophs in marsh soils from Sanjiang wetland with three different types of vegetation by 16S ribosomal RNA (rRNA) and pmoA gene analysis. Quantitative polymerase chain reaction analysis revealed the highest number of pmoA gene copies in marsh soils vegetated with Carex lasiocarpa (109 g−1 dry soil), followed by Carex meyeriana, and the least with Deyeuxia angustifolia (108 g−1 dry soil). Consistent results were obtained using Sanger sequencing and pyrosequencing techniques, both indicating the codominance of Methylobacter and Methylocystis species in Sanjiang wetland. Other less abundant methanotrophy, including cultivated Methylomonas and Methylosinus genus, and uncultured clusters such as LP20 and JR-1, were also detected in the wetland. Methanotroph diversity was almost the same in three different vegetation covered soils, suggesting that vegetation types had very little influence on the methanotroph diversity. Our study gives an in-depth insight into the community composition of aerobic methanotrophs in the Sanjiang wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. International Panel on Climate Change (2007) Summary for policymakers. Cambridge University Press, Cambridge

    Google Scholar 

  2. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292

    Article  CAS  PubMed  Google Scholar 

  3. Reeburgh W (2003) Global methane biogeochemistry. Treatise Geochem 4:65–89

    Google Scholar 

  4. Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):496–531

    CAS  PubMed  Google Scholar 

  5. Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 105(1):300–304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450(7171):874–878

    Article  CAS  PubMed  Google Scholar 

  7. Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450(7171):879–882

    Article  CAS  PubMed  Google Scholar 

  8. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  PubMed  Google Scholar 

  9. Belova SE, Baani M, Suzina NE, Bodelier PL, Liesack W, Dedysh SN (2011) Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep 3(1):36–46

    Article  CAS  PubMed  Google Scholar 

  10. Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664

    Article  CAS  PubMed  Google Scholar 

  11. Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187(13):4665–4670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463

    Article  CAS  PubMed  Google Scholar 

  13. Dumont MG, Murrell JC (2005) Community-level analysis: key genes of aerobic methane oxidation. Methods Enzymol 397:413–427

    Article  CAS  PubMed  Google Scholar 

  14. Liu X, Ma X (2000) Effect of large-scale reclamation on natural environment and regional environment protection in Sanjiang Plain. Sci Geogr Sin 20:14–19 (China)

    Google Scholar 

  15. Zhao K (1999) Chinese mires. Science Press, Beijing

    Google Scholar 

  16. Zhang L, Song C, Wang D, Wang Y, Xu X (2007) The variation of methane emission from freshwater marshes and response to the exogenous N in Sanjiang Plain Northeast China. Atmos Environ 41(19):4063–4072

    Article  CAS  Google Scholar 

  17. Song C, Xu X, Tian H, Wang Y (2009) Ecosystem–atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Glob Chang Biol 15(3):692–705

    Article  Google Scholar 

  18. Ding W, Cai Z, Tsuruta H (2004) Cultivation, nitrogen fertilization, and set-aside effects on methane uptake in a drained marsh soil in Northeast China. Glob Chang Biol 10(10):1801–1809

    Article  Google Scholar 

  19. Yun J, Yu Z, Li K, Zhang H (2013) Diversity, abundance and vertical distribution of methane-oxidizing bacteria (methanotrophs) in the sediments of the Xianghai wetland, Songnen Plain, northeast China. J Soil Sediment 13(1):242–252

    Article  CAS  Google Scholar 

  20. Yun JL, Zhuang GQ, Ma AZ, Guo HG, Wang YF, Zhang HX (2012) Community structure, abundance, and activity of methanotrophs in the Zoige wetland of the Tibetan Plateau. Microb Ecol 63(4):835–843

    Article  CAS  PubMed  Google Scholar 

  21. Yun JL, Ma AZ, Li YM, Zhuang GQ, Wang YF, Zhang HX (2010) Diversity of methanotrophs in Zoige wetland soils under both anaerobic and aerobic conditions. J Environ Sci 22(8):1232–1238

    Article  CAS  Google Scholar 

  22. Page A, Miller R, Keeney D (1982) Total carbon, organic carbon, and organic matter. Methods of soil analysis Part 2:539–579

  23. Bremner J, Sparks D, Page A, Helmke P, Loeppert R, Soltanpour P, Tabatabai M, Johnston C, Sumner M (1996) Nitrogen-total. Methods of soil analysis part 3—chemical methods:1085–1121

  24. Stubner S (2002) Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen (TM) detection. J Microbiol Meth 50(2):155–164

    Article  CAS  Google Scholar 

  25. McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74(5):1305–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62(3):1102–1106

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Liebner S, Rublack K, Stuehrmann T, Wagner D (2009) Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. Microb Ecol 57(1):25–35

    Article  PubMed  Google Scholar 

  28. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Westram R, Bader K, Prüsse E, Kumar Y, Meier H, Glöckner FO, Ludwig W (2011) ARB: a software environment for sequence data. Handbook of molecular microbial ecology I: metagenomics and complementary approaches:399–406

  31. Deng Y, Cui X, Lüke C, Dumont MG (2013) Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau. Environ Microbiol Rep 5:566–574

    Article  CAS  PubMed  Google Scholar 

  32. Lüke C, Frenzel P (2011) Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl Environ Microbiol 77(17):6305–6309

    Article  PubMed Central  PubMed  Google Scholar 

  33. Murrell J (2010) The aerobic methane oxidizing bacteria (methanotrophs). Handbook of hydrocarbon and lipid microbiology:1953–1966

  34. Kip N, Fritz C, Langelaan ES, Pan Y, Bodrossy L, Pancotto V, Jetten MSM, Smolders AJP, den Camp HJMO (2012) Methanotrophic activity and diversity in different Sphagnum magellanicum dominated habitats in the southernmost peat bogs of Patagonia. Biogeosciences 9(1):47–55

    Article  CAS  Google Scholar 

  35. Kip N, Dutilh BE, Pan Y, Bodrossy L, Neveling K, Kwint MP, Jetten MSM, den Camp HJMO (2011) Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. Environ Microbiol Rep 3(6):667–673

    Article  PubMed  Google Scholar 

  36. Dedysh S (2009) Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology 78(6):655–669

    Article  CAS  Google Scholar 

  37. Im J, Lee SW, Yoon S, DiSpirito AA, Semrau JD (2011) Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep 3(2):174–181

    Article  CAS  PubMed  Google Scholar 

  38. Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2008) 15N-DNA-stable isotope probing of diazotrophic methanotrophs in soil. Soil Biol Biochem 40(6):1272–1283

    Article  CAS  Google Scholar 

  39. Liebner S, Wagner D (2007) Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ Microbiol 9(1):107–117

    Article  CAS  PubMed  Google Scholar 

  40. Graef C, Hestnes AG, Svenning MM, Frenzel P (2011) The active methanotrophic community in a wetland from the High Arctic. Environ Microbiol Rep 3(4):466–472

    Article  CAS  PubMed  Google Scholar 

  41. Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4(9):1206–1214

    Article  CAS  PubMed  Google Scholar 

  42. Martineau C, Whyte LG, Greer CW (2010) Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian High Arctic. Appl Environ Microbiol 76(17):5773–5784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kip N, Ouyang WJ, van Winden J, Raghoebarsing A, van Niftrik L, Pol A, Pan Y, Bodrossy L, van Donselaar EG, Reichart GJ, Jetten MSM, Damste JSS, den Camp HJMO (2011) Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 77(16):5643–5654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Nauer PA, Dam B, Liesack W, Zeyer J, Schroth MH (2012) Activity and diversity of methane-oxidizing bacteria in glacier forefields on siliceous and calcareous bedrock. Biogeosciences 9(6):2259–2274

    Article  CAS  Google Scholar 

  45. Reim A, Luke C, Krause S, Pratscher J, Frenzel P (2012) One millimeter makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic-anoxic interface in a flooded paddy soil. ISME J 6(11):2128–2139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Changchun Song at the Sanjiang Experimental Station of Wetland Ecology, Chinese Academy of Sciences, for sampling assistance. This work was supported by the Strategic Leading Science & Technology Programme (B) of the Chinese Academy of Sciences (XDB05010200), the National Natural Science Foundation of China (41271277), and China Postdoctoral Science Foundation Funded Project (2013T60155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, J., Zhang, H., Deng, Y. et al. Aerobic Methanotroph Diversity in Sanjiang Wetland, Northeast China. Microb Ecol 69, 567–576 (2015). https://doi.org/10.1007/s00248-014-0506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0506-2

Keywords

Navigation