Skip to main content

Advertisement

Log in

Detection and Identification of Species-Specific Bacteria Associated with Synanthropic Mites

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Internal bacterial communities of synanthropic mites Acarus siro, Dermatophagoides farinae, Lepidoglyphus destructor, and Tyrophagus putrescentiae (Acari: Astigmata) were analyzed by culturing and culture-independent approaches from specimens obtained from laboratory colonies. Homogenates of surface-sterilized mites were used for cultivation on non-selective agar and DNA extraction. Isolated bacteria were identified by sequencing of the 16S rRNA gene. PCR amplified 16S rRNA genes were analyzed by terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning sequencing. Fluorescence in situ hybridization using universal bacterial probes was used for direct bacterial localization. T-RFLP analysis of 16S rRNA gene revealed distinct species-specific bacterial communities. The results were further confirmed by cloning and sequencing (284 clones). L. destructor and D. farinae showed more diverse communities then A. siro and T. putrescentiae. In the cultivated part of the community, the mean CFUs from four mite species ranged from 5.2 × 102 to 1.4 × 103 per mite. D. farinae had significantly higher CFUs than the other species. Bacteria were located in the digestive and reproductive tract, parenchymatical tissue, and in bacteriocytes. Among the clones, Bartonella-like bacteria occurring in A. siro and T. putresecentiae represented a distinct group related to Bartonellaceae and to Bartonella-like symbionts of ants. The clones of high similarity to Xenorhabdus cabanillasii were found in L. destructor and D. farinae, and one clone related to Photorhabdus temperata in A. siro. Members of Sphingobacteriales cloned from D. farinae and A. siro clustered with the sequences of “Candidatus Cardinium hertigii” and as a separate novel cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  2. Arlian LG, Morgan MS (2003) Biology, ecology, and prevalence of dust mites. Immunol Allergy Clin North Am 23:443–468

    Article  PubMed  Google Scholar 

  3. Barbieri E, Paster BJ, Hughes D, Zurek L, Moser DP, Teske A, Sogin ML (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda:Loliginidae). Environ Microbiol 3:151–167

    Article  PubMed  CAS  Google Scholar 

  4. Billeter SA, Levy MG, Chomel BB, Breitschwerdt EB (2008) Vector transmission of Bartonella species with emphasis on the potential for tick transmission. Med Vet Entomol 22:1–15

    Article  PubMed  CAS  Google Scholar 

  5. Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P, Ritchie DA (1992) Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol 58:3413–3416

    PubMed  CAS  Google Scholar 

  6. Channaiah LH, Subramanyam B, Zurek L (2010) Survival of Enterococcus faecalis OG1RF:pCF10 in poultry and cattle feed: vector competence of the red flour beetle, Tribolium castaneum (Herbst). J Food Prot 73:568–573

    PubMed  Google Scholar 

  7. Childs M, Bowman CE (1981) Lysozyme activity in 6 species of economically important astigmatid mites. Comp Biochem Physiol 70B:615–617

    CAS  Google Scholar 

  8. Colloff MJ (2009) Dust mites. CSIRO, Collingwood, p 583

    Book  Google Scholar 

  9. Daims H, Brühl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  PubMed  CAS  Google Scholar 

  10. Ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436–451

    Article  PubMed  CAS  Google Scholar 

  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  12. Erban T, Hubert J (2008) Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp Appl Acarol 44:199–212

    Article  PubMed  CAS  Google Scholar 

  13. Erban T, Hubert J (2010) Determination of pH in regions of the midguts of acaridid mites. J Insect Sci 10(42):1–12

    Article  Google Scholar 

  14. Erban T, Hubert J (2010) Comparative analyses of proteases in seven species of synanthropic acaridid mites. Arch Insect Bioch Physiol 75:187–206

    Article  CAS  Google Scholar 

  15. da Silva Ezequiel O, Gazeta GS, de Oliveira GN, de-Barros RAM, Serra-Freire NM (2001) Mites as vectors of fungi and bacteria: observation during natural infestation in the Pathology Laboratory. Entomologia y Vectores 8:481–489 [Portuguese, English abstract]

    Google Scholar 

  16. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  17. Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72

    Article  PubMed  CAS  Google Scholar 

  18. Franzolin MR, Gambale W, Cuero RG, Correa B (1999) Interaction between toxigenic Apergillus flavus link and mites (Tyrophagus putrescentiae Schrank) on maize grains: effects on fungal growth and aflatoxin production. J Stored Prod Res 35:215–224

    Article  Google Scholar 

  19. García N (2004) Efforts to control mites on Iberian ham by physical methods. Exp Appl Acarology 32:41–50

    Article  Google Scholar 

  20. Gazeta GS, Norberg AN, Aboud-Dutra AE, Serra-Freire NM (2000) Tyrophagus putrescentiae (Schrank, 1781) as a vector of pathogenic bacteria: laboratory observation. Entomologia y Vectores 7:49–55 [Portuguese, English abstract]

    Google Scholar 

  21. Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98:13–20

    Article  PubMed  CAS  Google Scholar 

  22. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  23. Halliday RB, O’Connor BM, Baker AS (2000) Global diversity of mites. In: Raven PH, Williams T (eds) Nature and human society: the quest for a sustainable world. Proceedings of the 1997 forum on biodiversity. National Academies, Washington, pp 192–212

    Google Scholar 

  24. Hamilton JV, Lehane MJ, Braig HR (2003) Isolation of Enterobacter sakazakii from midgut of Stomoxys calcitrans. Emerging Infect Dis 9:1355–1356

    Article  PubMed  Google Scholar 

  25. Harris J, Mason DE, Li J, Burdick KW, Backes BJ, Chen T, Shipway A, Van Heeke G, Gough L, Ghaemmaghami A, Shakib F, Debaene F, Winssinger N (2004) Activity profile of dust mite allergen extract using substrate libraries and functional proteomic microarrays. Chem Biol 11:1361–1372

    Article  PubMed  CAS  Google Scholar 

  26. Hogg JC, Lehane MJ (1999) Identification of bacterial species associated with the sheep scab mite (Psoroptes ovis) by using amplified genes coding for 16S rRNA. Appl Environ Microbiol 65:4227–4229

    PubMed  CAS  Google Scholar 

  27. Horak B, Dutkiewicz J, Solarz K (1996) Microflora and acarofauna of bed dust from homes in Upper Silesia, Poland. Ann Allergy Asthma Immunol 76:41–50

    Article  PubMed  CAS  Google Scholar 

  28. Hoy MA, Jeyaprakash A (2005) Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol Control 32:427–441

    Article  Google Scholar 

  29. Hubert J, Stejskal V, Munzbergová Z, Kubátová A, Vaňová M, Žďárková E (2004) Mites and fungi in heavily infested stores in the Czech Republic. J Econ Entomol 97:2144–2153

    Article  PubMed  CAS  Google Scholar 

  30. Hubert J, Križková-Kudliková I, Stejskal V (2004) Review of digestive enzymes of stored product and house dust mites. Proceedings of the V symposium of the European association of acarologists “acarine biodiversity in the natural and human sphere”, Berlin 2004. Phytophaga 14:695–710

    Google Scholar 

  31. Hubert J, Jarošík V, Mourek J, Kubatová A, Žďárková E (2004) Astigmatid mite growth and fungi preference (Acari: Acaridida): comparisons in laboratory experiments. Pedobiologia 48:205–214

    Article  Google Scholar 

  32. Hughes TE (1950) The physiology of the alimentary canal of Tyrophagus farinae. Quart J Microsc Sci 91:54–60

    Google Scholar 

  33. Hughes AM (1976) The mites of stored food and houses. Technical bulletin of the UK ministry of agriculture, fisheries and food, Her Majesty’s Stationery Office, London 400 pp.

  34. Jow H, Hudelot C, Rattray M, Higgs P (2002) Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. Mol Biol Evol 19:1591–1601

    Article  PubMed  CAS  Google Scholar 

  35. Kim CM, Kim JY, Yi YH, Lee MJ, Cho MR, Shah DH, Klein TA, Kim HC, Song JW, Chong ST, O’Guinn ML, Lee JS, Lee IY, Park JH, Chae JS (2005) Detection of Bartonella species from ticks, mites and small mammals in Korea. J Vet Sci 6:327–334

    PubMed  Google Scholar 

  36. Kitajima EW, Groot TVM, Novelli VM, Freitas-Astúa J, Alberti G, de-Moraes GJ (2007) In situ observation of the Cardinium symbionts of Brevipalspus (Acari: Tenuipalpidae) by electron microscopy. Exp Appl Acarol 42:263–271

    Article  PubMed  Google Scholar 

  37. Langer K, Breuer K, Kapp A, Werfel T (2007) Staphylococcus aureus-derived enterotoxins enhance house dust mite-induced patch test reactions in atopic dermatitis. Exp Dermatol 16:124–129

    Article  PubMed  CAS  Google Scholar 

  38. Larson Z, Subramanyam B, Zurek L, Herrman T (2008) Diversity and antibiotic resistance of enterococci associated with the stored product insects collected from feed mills. J Stored Prod Res 44:198–203

    Article  CAS  Google Scholar 

  39. Mathaba LT, Pope CH, Lenzo J, Hartofillis M, Peake H, Moritz RL, Simpson RJ, Bubert A, Thompson PJ, Stewart GA (2002) Isolation and characterization of a 13.8-kDa bacteriolytic enzyme from house dust mite extracts: homology with prokaryotic proteins suggests that the enzyme could be bacterially derived. FEMS Immunol Med Microbiol 33:77–88

    Article  PubMed  CAS  Google Scholar 

  40. Mramba F, Broce AB, Zurek L (2006) Isolation of Enterobacter sakazakii from stable flies, Stomoxys calcitrans L. (Diptera: Muscidae). J Food Prot 69:671–673

    PubMed  CAS  Google Scholar 

  41. Mramba F, Broce AB, Zurek L (2007) Vector competence of stable flies, Stomoxys calcitrans L. (Diptera: Muscidae), for Enterobacter sakazakii. J Vector Ecol 32:134–139

    Article  PubMed  CAS  Google Scholar 

  42. Nakamura Y, Kawai S, Yukuhiro F, Ito S, Gotoh T, Kisimoto R, Yanase T, Matsumoto Y, Kageyama D, Noda H (2009) Prevalence of Cardinium bacteria in planthoppers and spider mites and taxonomic revision of “Candidatus Cardinium hertigii” based on detection of a new Cardinium group from biting midges. Appl Environ Microbiol 75:6757–6763

    Article  PubMed  CAS  Google Scholar 

  43. Oh H, Ishii A, Tongu Y, Itano K (1986) Microorganisms associated with the house dust mite, Dermatophagoides. Jpn J Sanit Zool 37:229–235 [in Japanese, English abstract]

    Google Scholar 

  44. Ortego F, Sánchez-Ramos I, Ruiz M, Castañera P (2000) Characterization of proteases from a stored product mite, Tyrophagus putrescentiae. Arch Insect Biochem Physiol 43:116–124

    Article  PubMed  CAS  Google Scholar 

  45. Perotti MA, Allen JM, Reed DL, Braig HR (2007) Host–symbiont interactions of the primary endosymbiont of human head and body lice. FASEB J 21:1058–1066

    Article  PubMed  CAS  Google Scholar 

  46. Perotti MA, Braig HR (2004) Endosymbionts of Acari. Phytophaga 14:457–476

    Google Scholar 

  47. Perotti MA, Braig HR (2011) Eukaryotic ectosymbionts of Acari. J Appl Entomol 135:514–523

    Article  Google Scholar 

  48. Rózalska M, Szewczyk EM (2008) Staphylococcus cohnii hemolysins—isolation, purification and properties. Folia Microbiol (Praha) 53:521–526

    Article  Google Scholar 

  49. Sagová-Marečková M, Čermák L, Novotná J, Plhačková K, Forstová J, Kopecký J (2008) Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl Environ Microbiol 74:2902–2907

    Article  PubMed  Google Scholar 

  50. Sánchez-Ramos I, Hernández CA, Castañera P, Ortego F (2004) Proteolytic activities in body and faecal extracts of the storage mite, Acarus farris. Med Vet Entomol 18(4):378–386

    Article  PubMed  Google Scholar 

  51. Saleh SM, Keladan NL, Shaker N (1991) Control of European house dust mite Dermatophagoides pteronyssinus (Trouessart) with Bacillus spp. Acarologia (Acarologia) 32:257–260

    Google Scholar 

  52. Sinha RN (1979) Ecology of microflora in stored grain. Ann Tech Agri 28:191–209

    Google Scholar 

  53. Smrž J (2003) Microanatomical and biological aspects of bacterial associations in Tyrophagus putrescentiae (Acari: Acaridida). Exp Appl Acarol 31:105–113

    Article  PubMed  Google Scholar 

  54. Smrž J, Čatská V (2010) Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis 52:33–40

    Article  Google Scholar 

  55. Šobotník J, Alberti G, Weyda F, Hubert J (2008) Ultrastructure of the digestive tract in Acarus siro (Acari: Acaridida). J Morphol 269:54–71

    Article  PubMed  Google Scholar 

  56. Stejskal V, Hubert J (2008) Risk of occupational allergy to stored grain arthropods and false pest-risk perception in Czech grain stores. Ann Agric Environ Med 15:29–35

    PubMed  Google Scholar 

  57. Stewart GA, Lake FR, Thompson PJ (1991) Faecally derived hydrolytic enzymes from Dermatophagoides pteronyssinus: physicochemical characterization of potential allergens. Int Arch Allergy Appl Immunol 95:248–256

    Article  PubMed  CAS  Google Scholar 

  58. Stewart GA, Bird CH, Krska KD, Colloff MJ, Thompson PJ (1992) A comparative study of allergenic and potentially allergenic enzymes from Dermatophagoides pteronyssinus, D. farinae and Euroglyphus maynei. Exp Appl Acarol 16:165–180

    Article  PubMed  CAS  Google Scholar 

  59. Stoll S, Gadau J, Gross J, Feldhaar H (2007) Bacterial microbiota associated with ants of the genus Tetraponera. Biol J Linnean Soc 90:399–412

    Article  Google Scholar 

  60. Tailliez P, Pagès S, Ginibre N, Boemare N (2006) New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int J Syst Evol Microbiol 56:2805–2818

    Article  PubMed  CAS  Google Scholar 

  61. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  62. Trivedi B, Valerio C, Slater JE (2003) Endotoxin content of standardized allergen vaccines. J Allergy Clin Immunol 111:777–783

    Article  PubMed  CAS  Google Scholar 

  63. Valerio CR, Murray P, Arlian LG, Slater JE (2005) Bacterial 16S ribosomal DNA in house dust mite cultures. J Allergy Clin Immunol 116:1296–1300

    Article  PubMed  CAS  Google Scholar 

  64. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  CAS  Google Scholar 

  65. Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc Biol Sci 270:1857–1865

    Article  PubMed  Google Scholar 

  66. Yella L, Morgan MS, Arlian LG (2011) Population growth and allergen accumulation of Dermatophagoides pteronyssinus cultured at 20 and 25°C. Exp Appl Acarol 53:103–119

    Article  PubMed  Google Scholar 

  67. Yezerski A, Cussatt G, Glick D, Evancho M (2005) The effects of the presence of stored product pests on the microfauna of a flour community. J Appl Microbiol 98:507–515

    Article  PubMed  CAS  Google Scholar 

  68. Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016

    Article  PubMed  CAS  Google Scholar 

  69. Zurek L, Schal C, Watson DW (2000) Diversity and contribution of the intestinal bacterial community to the development of Musca domestica (Diptera: Muscidae) larvae. J Med Entomol 37:924–928

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation (grant no. GA525/09/1872); the Ministry of Education, Youth and Sports of the Czech Republic (grant no. ME09013); and by the OECD (project AGR/PROG-JA00038773). M.A.P. is supported by the Royal Society, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hubert.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table S1

The identification and the numbers of obtained bacterial clones and isolates from the tested species of mites: Acarus siro (As), Dermatophagoides farinae (Df), Lepidoglyphus destructor (Ld), and Tyrophagus putrescentiae (Tp); diets: HDMd—house-dust mite diet, SPMd—stored-product mite diet. The sequences obtained from isolates are indicated as isol. The classification reliability is given by confidence threshold (ct) value (RDP Classifier, Wang et al. 2007). (PDF 23 kb)

Supplementary Figure S1

Phylogenetic analysis of Enterobacteriales clones related to the genera Xenorhabdus and Providencia with their closest neighbors available in public databases. Phylogeny was inferred by Bayesian analysis of 16S rRNA gene sequences of 23 clones from L. destructor (Ld), D. farinae (Df), and 18 type-strain sequences of the related species. Branch lengths correspond to mean posterior estimates of evolutionary distances (scale bar, 0.05). For selected branches, the branch labels indicate the Bayesian posterior probability and supporting bootstrap values from maximum-likelihood and neighbor-joining analyses. The phylograms were outgrouped using the E. coli sequence U00096. (PDF 21 kb)

Supplementary Figure S2

Phylogenetic analysis of clones and isolates belonging to Bacillales together with their closest neighbors available in public databases. Phylogeny was inferred by Bayesian analysis of 135 16S rRNA gene sequences of 115 clones from L. destructor (Ld), D. farinae (Df), A. siro (As), and T. putrescentiae (Tp), 20 cultured isolates (marked as isol.) from mite whole body homogenates or mite diets HDMd and SPMd, and 16 selected type-strain sequences from the genera Bacillus and Staphylococcus. Branch lengths correspond to mean posterior estimates of evolutionary distances (scale bar, 0.5). Branch labels indicate the Bayesian posterior probability and for selected branches also supporting bootstrap values from maximum-likelihood and neighbor-joining analyses. The phylograms were outgrouped using the E. coli sequence U00096. (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubert, J., Kopecký, J., Perotti, M.A. et al. Detection and Identification of Species-Specific Bacteria Associated with Synanthropic Mites. Microb Ecol 63, 919–928 (2012). https://doi.org/10.1007/s00248-011-9969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9969-6

Keywords

Navigation