Skip to main content

Advertisement

Log in

Influence of Deglaciation on Microbial Communities in Marine Sediments Off the Coast of Svalbard, Arctic Circle

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 17 June 2011

Abstract

Increases in global temperatures have been shown to enhance glacier melting in the Arctic region. Here, we have evaluated the effects of meltwater runoff on the microbial communities of coastal marine sediment located along a transect of Temelfjorden, in Svalbard. As close to the glacier front, the sediment properties were clearly influenced by deglaciation. Denaturing gradient gel electrophoresis profiles showed that the sediment microbial communities of the stations of glacier front (stations 188–178) were distinguishable from that of outer fjord region (station 176). Canonical correspondence analysis indicated that total carbon and calcium carbonate in sediment and chlorophyll a in bottom water were key factors driving the change of microbial communities. Analysis of 16S rRNA gene clone libraries suggested that microbial diversity was higher within the glacier–proximal zone (station 188) directly affected by the runoffs than in the outer fjord region. While the crenarchaeotal group I.1a dominated at station 176 (62%), Marine Benthic Group-B and other Crenarchaeota groups were proportionally abundant. With regard to the bacterial community, alpha-Proteobacteria and Flavobacteria lineages prevailed (60%) at station 188, whereas delta-Proteobacteria (largely sulfate-reducers) predominated (32%) at station 176. Considering no clone sequences related to sulfate-reducers, station 188 may be more oxic compared to station 176. The distance-wise compositional variation in the microbial communities is attributable to their adaptations to the sediment environments which are differentially affected by melting glaciers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Wilfried H, Martin H, Stephan S (1998) Into the second century of worldwide glacier monitoring: prospects and strategies. UNESCO, Paris

    Google Scholar 

  2. Dierssen HM, Smith RC, Vernet M (2002) Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc Natl Acad Sci USA 99:1790–1795

    Article  PubMed  CAS  Google Scholar 

  3. Hanna E, Huybrechts P, Steffen K, Cappelen J, Huff R, Shuman C, Irvine-Fynn T, Wise S, Griffiths M (2008) Increased runoff from melt from the Greenland ice sheet: a response to global warming. J Climate 21:331–341

    Article  Google Scholar 

  4. Mueller DR, Vincent WF, Pollard WH, Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwig 123:173–197

    Google Scholar 

  5. Fountain AG, Tranter M, Nylen TH, Lewis KJ, Mueller DR (2004) Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctic. J Glaciol 50:35–45

    Article  Google Scholar 

  6. DeLong EF, Wu KY, Prezelin BB, Jovine RV (1994) High abundance of archaea in Antarctic marine picoplankton. Nature 371:695–697

    Article  PubMed  CAS  Google Scholar 

  7. Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF (1998) Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595

    PubMed  CAS  Google Scholar 

  8. Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM (2003) Abundance and distribution of planktonic archaea and bacteria in the waters west of the Antarctic peninsula. Limnol Oceanogr 48:1893–1902

    Article  Google Scholar 

  9. Garneau ME, Vincent WF, Alonso-Saez L, Gratton Y, Lovejoy C (2006) Prokaryotic community structure and heterotrophic production in a river-influenced coastal arctic ecosystem. Aquat Microb Ecol 42:27–40

    Article  Google Scholar 

  10. Wells LE, Deming JW (2003) Abundance of bacteria, the Cytophaga-Flavobacterium cluster and archaea in cold oligotrophic waters and nepheloid layers of the Northwest Passage, Canadian archipelago. Aquat Microb Ecol 31:19–31

    Article  Google Scholar 

  11. Kirchman D, Elifantz H, Dittel A, Malmstrom R, Cottrell M (2007) Standing stocks and activity of archaea and bacteria in the western Arctic ocean. Limnol Oceanogr 52:495–507

    Article  CAS  Google Scholar 

  12. Granéli W, Bertilsson S, Philibert A (2004) Phosphorus limitation of bacterial growth in high Arctic lakes and ponds. Aquat Sci 66:430–439

    Article  Google Scholar 

  13. Crump BC, Peterson BJ, Raymond PA, Amon RM, Rinehart A, McClelland JW, Holmes RM (2009) Circumpolar synchrony in big river bacterioplankton. Proc Natl Acad Sci USA 106:21208–21212

    Article  PubMed  CAS  Google Scholar 

  14. Yao T, Liu Y, Kang S, Jiao N, Zeng Y, Liu X, Zhang Y (2008) Bacteria variabilities in a Tibetan ice core and their relations with climate change. Global Biogeochem Cycles 22

  15. Deiglmayr K, Philippot L, Tscherko D, Kandeler E (2006) Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environ Microbiol 8:1600–1612

    Article  PubMed  CAS  Google Scholar 

  16. Bishop JKB (1986) Instrument and methods: the correction and suspended particulate matter calibration of Sea Tech transmissometer data. Deep-sea Res 33:121–134

    Article  Google Scholar 

  17. Stein R (1991) Accumulation of organic carbon in marine sediments. Springer, New York

    Google Scholar 

  18. Folk RL (1974) Petrology of sedimentary rocks. Hemphill Publishing Co, Austin, Texas

    Google Scholar 

  19. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  20. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555

    Article  PubMed  CAS  Google Scholar 

  21. Park BJ, Park SJ, Yoon DN, Schouten S, Sinninghe Damste JS, Rhee SK (2010) Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl Environ Microbiol 76:7575–7587

    Article  PubMed  CAS  Google Scholar 

  22. Henckel T, Friedrich M, Conrad R (1999) Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990

    PubMed  CAS  Google Scholar 

  23. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  PubMed  CAS  Google Scholar 

  24. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

    PubMed  CAS  Google Scholar 

  25. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, UK, New York

    Google Scholar 

  26. Sapp M, Wichels A, Wiltshire KH, Gerdts G (2007) Bacterial community dynamics during the winter-spring transition in the North Sea. FEMS Microbiol Ecol 59:622–637

    Article  PubMed  CAS  Google Scholar 

  27. Jongman RHG, ter Braak CJF, van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Park SJ, Kang CH, Rhee SK (2006) Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J Microbiol Biotechnol 16:1640–1645

    CAS  Google Scholar 

  29. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  30. Jackson DA, Somers KM, Harvey HH (1989) Similarity coefficients: measures of co-occurrence and association or simply measures of occurrence? Am Nat 133:436

    Article  Google Scholar 

  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  32. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  34. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  35. Felsenstein J (1985) Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  36. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Google Scholar 

  37. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    Article  PubMed  CAS  Google Scholar 

  38. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  PubMed  CAS  Google Scholar 

  39. Martin AP (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68:3673–3682

    Article  PubMed  CAS  Google Scholar 

  40. Forwick M, Vorren TO, Hald M, Korsun S, Roh Y, Vogt C, Yoo K-C (2010) Spatial and temporal influence of glaciers and rivers on the sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen. Geological Society of London, Special Publication, London

    Google Scholar 

  41. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D'Hondt S, Jorgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820

    Article  PubMed  CAS  Google Scholar 

  42. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl Environ Microbiol 69:7224–7235

    Article  PubMed  CAS  Google Scholar 

  43. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488

    Article  PubMed  CAS  Google Scholar 

  44. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  45. Park SJ, Park BJ, Rhee SK (2008) Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12:605–615

    Article  PubMed  CAS  Google Scholar 

  46. Wuchter C, Schouten S, Boschker HT, Sinninghe Damste JS (2003) Bicarbonate uptake by marine Crenarchaeota. FEMS Microbiol Lett 219:203–207

    Article  PubMed  CAS  Google Scholar 

  47. Ingalls AE, Shah SR, Hansman RL, Aluwihare LI, Santos GM, Druffel ER, Pearson A (2006) Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc Natl Acad Sci USA 103:6442–6447

    Article  PubMed  CAS  Google Scholar 

  48. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461:976–979

    Article  PubMed  CAS  Google Scholar 

  49. Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sorensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs KU (2006) Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103:3846–3851

    Article  PubMed  CAS  Google Scholar 

  50. Sorensen KB, Teske A (2006) Stratified communities of active archaea in deep marine subsurface sediments. Appl Environ Microbiol 72:4596–4603

    Article  PubMed  CAS  Google Scholar 

  51. Dang H, Li T, Chen M, Huang G (2008) Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 74:52–60

    Article  PubMed  CAS  Google Scholar 

  52. Hunter EM, Mills HJ, Kostka JE (2006) Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol 72:5689–5701

    Article  PubMed  CAS  Google Scholar 

  53. Bowman JP, McCuaig RD (2003) Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol 69:2463–2483

    Article  PubMed  CAS  Google Scholar 

  54. Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles 1:117–123

    Article  PubMed  CAS  Google Scholar 

  55. Li L, Kato C, Horikoshi K (1999) Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol 1:391–400

    Article  PubMed  CAS  Google Scholar 

  56. Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    PubMed  CAS  Google Scholar 

  57. Sass A, Rutters H, Cypionka H, Sass H (2002) Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol 177:468–474

    Article  PubMed  CAS  Google Scholar 

  58. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed  Google Scholar 

  59. Peix A, Rivas R, Trujillo ME, Vancanneyt M, Velazquez E, Willems A (2005) Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Int J Syst Evol Microbiol 55:1163–1166

    Article  PubMed  CAS  Google Scholar 

  60. Eilers H, Pernthaler J, Glockner FO, Amann R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051

    Article  PubMed  CAS  Google Scholar 

  61. Ravenschlag K, Sahm K, Amann R (2001) Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Appl Environ Microbiol 67:387–395

    Article  PubMed  CAS  Google Scholar 

  62. Li H, Yu Y, Luo W, Zeng Y, Chen B (2009) Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles 13:233–246

    Article  PubMed  CAS  Google Scholar 

  63. Gray JP, Herwig RP (1996) Phylogenetic analysis of the bacterial communities in marine sediments. Appl Environ Microbiol 62:4049–4059

    PubMed  CAS  Google Scholar 

  64. Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145(Pt 11):3305–3315

    PubMed  CAS  Google Scholar 

  65. Hald M, Korsun S (1997) Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic. J Foram Res 27:101–122

    Article  Google Scholar 

  66. Hald M, Korsun S (1998) Modern benthic foraminifera off Novaya Zemlya tidewater glaciers, Russian arctic. Arct Alp Res 30:61–77

    Article  Google Scholar 

  67. Forwick M, Vorren TO, Hald M, Korsun S, Roh Y, Vogt C, Yoo K-C (2011) Spatial and temporal influence of glaciers and rivers on the sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen. Geological Society of London, Special Publication, London. (in press)

  68. Bano N, Ruffin S, Ransom B, Hollibaugh JT (2004) Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl Environ Microbiol 70:781–789

    Article  PubMed  CAS  Google Scholar 

  69. Beier S, Witzel KP, Marxsen J (2008) Bacterial community composition in Central European running waters examined by temperature gradient gel electrophoresis and sequence analysis of 16S rRNA genes. Appl Environ Microbiol 74:188–199

    Article  PubMed  CAS  Google Scholar 

  70. Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36(2–3):211–222

    Article  PubMed  CAS  Google Scholar 

  71. Farnleitner AH, Wilhartitz I, Ryzinska G, Kirschner AK, Stadler H, Burtscher MM, Hornek R, Szewzyk U, Herndl G, Mach RL (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environ Microbiol 7:1248–1259

    Article  PubMed  CAS  Google Scholar 

  72. Forwick M (2005) Marine-geological cruise to Spitsbergen fjords. University of Tromsø, Cruise Report

Download references

Acknowledgments

This work was supported by Ministry of Science and Technology grant (R01-2007-000-20806-0), Basic Science Research Program (2009–0087901), and Mid-career Research Program (2010–0014384) through the National Research Foundation of MEST (Ministry of Education, Science and Technology), South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Keun Rhee.

Additional information

Soo-Je Park and Byoung-Joon Park contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00248-011-9888-6

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1527 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SJ., Park, BJ., Jung, MY. et al. Influence of Deglaciation on Microbial Communities in Marine Sediments Off the Coast of Svalbard, Arctic Circle. Microb Ecol 62, 537–548 (2011). https://doi.org/10.1007/s00248-011-9860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9860-5

Keywords

Navigation