Skip to main content
Log in

Primary Production in a Subtropical Stratified Coastal Lagoon—Contribution of Anoxygenic Phototrophic Bacteria

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Anaerobic anoxygenic phototrophic bacteria can be found in the suboxic waters of shallow stratified coastal systems, and may play important roles in the total primary production of subtropical stratified coastal lagoons. We investigated the spatiotemporal variability of light CO2 fixation and net oxygen production in the stratified Conceição Lagoon (Brazil) in summer and fall of 2007, as well as the contribution of bacteriochlorophyll a (BChl a)-containing bacteria to photosynthetically driven electron transfer. Both chlorophyll a (Chl a) and BChl a varied in space, while only BChl a varied in time (three-fold increase from summer to fall). In summer, net oxygen production and light CO2 fixation were correlated, with both having higher rates with higher Chl a concentrations in the enclosed region of the lagoon. In fall, CO2 fixation was decoupled from oxygen production. Denaturing gradient gel electrophoresis revealed that bacterial communities of oxic site 12 and suboxic site 33 formed one cluster, different from other oxic samples within the lagoon. In addition, BChl a/Chl a ratios at these sites were high, 40% and 45%, respectively. Light acted as the main factor controlling the BChl a concentration and CO2 fixation rates. High turbidity within the enclosed area of the lagoon explained high BChl a and decoupling between CO2 fixation and oxygen production in oxygenated waters. Contribution of purple sulfur bacteria to total bacterial density in suboxic waters was 1.2%, and their biomass contributed to a much higher percentage (12.2%) due to their large biovolume. Our results indicate a significant contribution of anaerobic anoxygenic bacteria to the primary production of the “dead zone” of Conceição Lagoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Abreu PC, Biddanda BB, Odebrecht C (1992) Bacterial dynamics of the Patos Lagoon estuary, southern Brazil (32-degrees-S, 52-degrees-W)—relationship with phytoplankton and suspended material. Estuar Coast Shelf Sci 35:621–635

    Article  Google Scholar 

  2. Abreu PC, Odebrecht C, González A (1994) Particulate and dissolved phytoplankton production of the Patos Lagoon estuary, southern Brazil: comparison of methods and influencing factors. J Plankton Res 16:737–753

    Article  Google Scholar 

  3. Assumpção DTG, Toledo APP, D’Aquino VA (1981) Levantamento ecológico da Lagoa da Conceição (Florianópolis, Santa Catarina) I: Caracterização-parâmetros ambientais. Ciênc Cult 33:1096–1101

    Google Scholar 

  4. Bauer CE, Buggy JJ, Mosley C (1993) Control of photosystem genes in Rhodobacter capsulatus. Trends Genet 9:56–60

    Article  CAS  PubMed  Google Scholar 

  5. Bergondo DL, Kester DR, Stoffel HE, Woods WL (2005) Time-series observations during the low sub-surface oxygen events in Narragansett Bay during summer 2001. Mar Chem 97:90–103

    Article  CAS  Google Scholar 

  6. Brewer PG, Peltzer ET (2009) Limits to marine life. Science 324:347–348

    Article  CAS  PubMed  Google Scholar 

  7. Camacho A, Vicente E, Miracle MR (2000) Spatio-temporal distribution and growth dynamics of phototrophic sulfur bacteria populations in the sulfide-rich Lake Arcas. Aquat Sci 62:334–349

    Article  CAS  Google Scholar 

  8. Casamayor EO, Garcia-Cantizano J, Pedrós-Alió C (2008) Carbon dioxide fixation in the dark by photosynthetic bacteria in sulfide-rich stratified lakes with oxic–anoxic interfaces. Limnol Oceanogr 53:1193–1203

    Article  CAS  Google Scholar 

  9. Casamayor EO, Garcia-Cantizano J, Mas J, Pedrós-Alió C (2001) Primary production in estuarine oxic/anoxic interfaces: contribution of microbial dark CO2 fixation in the Ebro River Salt Wedge Estuary. Mar Ecol Prog Ser 215:49–56

    Article  CAS  Google Scholar 

  10. Cohen Y, Krumbein WE, Shilo M (1977) Solar Lake (Sinai) 2. Distribution of photosynthetic microorganisms and primary production. Limnol Oceanogr 22:609–620

    Article  CAS  Google Scholar 

  11. Cottrell MT, Mannino A, Kirchman DL (2006) Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Appl Environ Microbiol 72:557–564

    Article  CAS  PubMed  Google Scholar 

  12. Crump BC, Peranteau C, Beckingham B, Cornwell JC (2007) Respiratory succession and community succession of bacterioplankton in seasonally anoxic estuarine waters. Appl Environ Microbiol 73:6802–6810

    Article  CAS  PubMed  Google Scholar 

  13. Diaz RJ (2001) Overview of hypoxia around the world. J Environ Qual 30:275–281

    Article  CAS  PubMed  Google Scholar 

  14. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  CAS  PubMed  Google Scholar 

  15. Folt CL, Wevers MJ, Yoder-Williams MP, Howmiller RP (1989) Field study comparing growth and viability of a population of phototrophic bacteria. Appl Environ Microbiol 55:78–85

    CAS  PubMed  Google Scholar 

  16. Fonseca AL (2004) Variação sazonal e espacial das características hidroquímicas, dos fluxos de nutrientes e do metabolismo na interface água-sedimento da Lagoa da Conceição (SC, Brasil). Universidade Federal de São Paulo, São Paulo, p 180

    Google Scholar 

  17. Fonseca AL, Braga ES (2006) Temporal dynamic of the dissolved nutrients and the eutrophization processes in a southern Brazilian coastal lagoon, Conceição Lagoon. J Coast Res SI 39:1229–1233

    Google Scholar 

  18. Fonseca AL, Braga E, Eichler B (2002) Distribuição espacial dos nutrientes inorgânicos dissolvidos e da biomassa fitoplanctônica no sistema pelágico da Lagoa da Conceição, Santa Catarina, Brasil (Setembro, 2000). Atlântica 24:69–83

    Google Scholar 

  19. Fontes MLS (2004) Breve estudo espaço-temporal e de impacto do feriado de Carnaval e de Corpus Christi sobre variáveis ambientais nas águas da Lagoa da Conceição, Florianópolis. Universidade Federal de Santa Catarina, Florianópolis, p 133

    Google Scholar 

  20. Fontes MLS, Abreu PA (2009) Spatiotemporal variation of bacterial assemblages in a shallow subtropical coastal lagoon in southern Brazil. Microb Ecol 58:140–152

    Article  PubMed  Google Scholar 

  21. Garcia-Cantizano J, Casamayor EO, Gasol JM, Guerrero R, Pedrós-Alió C (2005) Partitioning of CO2 incorporation among planktonic microbial guilds and estimation of in situ specific growth rates. Microb Ecol 50:230–241

    Article  PubMed  Google Scholar 

  22. Goericke R (2002) Bacteriochlorophyll a in the ocean: is anoxygenic bacterial photosynthesis important? Limnol Oceanogr 47:290–295

    Article  CAS  Google Scholar 

  23. Grasshoff K, Ehrhardt M, Kremling K (1999) Methods of seawater analysis. Wiley-VCH, Weinhein

    Book  Google Scholar 

  24. Guerrero R, Montesinos E, Pedros-Alio C, Esteve I, Mas J, Gemerden HV, Hofman PAG, Bakker JF (1985) Phototrophic sulfur bacteria in two Spanish lakes: vertical distribution and limiting factors. Limnol Oceanogr 30:919–931

    Article  CAS  Google Scholar 

  25. Hammer O, Harper DAT, Ryan PD (2001) Paleontological statistics software package for education and data analysis. Paleontol Electon 4:9–17

    Google Scholar 

  26. Helly JJ, Levin LA (2004) Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res Part 1 Oceanogr Res Pap 51:1159–1168

    Article  CAS  Google Scholar 

  27. Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    CAS  PubMed  Google Scholar 

  28. Irwin B (1991) Coulometric measurement of primary production, with comparison against dissolved oxygen and 14C methods in a seasonal study. Mar Ecol Prog Ser 71:97–102

    Article  Google Scholar 

  29. Jones JG (1979) A guide to methods for estimating microbial numbers and biomass in freshwater. Scientific, Ambleside

    Google Scholar 

  30. Kjerfve B (1986) Comparative oceanography of coastal lagoons. In: Wolf D (ed) Estuarine variability. Academic, New York, pp 63–81

    Google Scholar 

  31. Knoppers B, Opitz S, Souza M, Miguez C (1984) The spatial distribution of particulate organic matter and some physical and chemical water properties in Conceição Lagoon, Santa Catarina, Brazil (July 19, 1982). Braz Arch Biol Technol 27:59–77

    CAS  Google Scholar 

  32. Koblizek M, Ston-Egiert J, Sagan S, Kolber ZS (2005) Diel changes in bacteriochlorophyll a concentration suggest rapid bacterioplankton cycling in the Baltic Sea. FEMS Microbiol Ecol 51:353–361

    Article  CAS  PubMed  Google Scholar 

  33. Koblizek M, Masin M, Ras J, Poulton AJ, Prasil O (2007) Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environ Microbiol 9:2401–2406

    Article  CAS  PubMed  Google Scholar 

  34. Koblizek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta Bioenerg 1706:220–231

    Article  CAS  Google Scholar 

  35. Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179

    Article  CAS  PubMed  Google Scholar 

  36. Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    Article  CAS  PubMed  Google Scholar 

  37. Lami R, Cuperová Z, Ras J, Lebaron P, Koblizek M (2009) Distribution of free-living and particle-attached aerobic anoxygenic phototrophic bacteria in marine environments. Aquat Microb Ecol 55:31–38

    Article  Google Scholar 

  38. Lin H-J, Hung J-J, Shao K-T, Kuo F (2001) Trophic functioning and nutrient flux in a highly productive tropical lagoon. Oecologia 129:395–406

    Google Scholar 

  39. Massana R, Gasol JM, Bjornsen PK, Blackburn N, Hagstrom A, Hietanen S, Hygum BH, Kuparinen J, PedrosAlio C (1997) Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Sci Mar 61:397–407

    Google Scholar 

  40. Medina-Gomez I, Herrera-Silveira JA (2006) Primary production dynamics in a pristine groundwater influenced coastal lagoon of the Yucatan Peninsula. Cont Shelf Res 26:971–986

    Article  Google Scholar 

  41. Montes-Hugo MA, Alvarez-Borrego S, Gaxiola-Castro G (2004) Annual phytoplankton production in a coastal lagoon of the southern California Current System. Mar Ecol Prog Ser 277:51–60

    Article  Google Scholar 

  42. Muehe D, Caruso F Jr (1989) Batimetria e algumas considerações sobre a evolução geológica da Lagoa da Conceição, Ilha de Santa Catarina. Geosul 49:32–44

    Google Scholar 

  43. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturating gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  44. Nielsen GE, Bresta A-M (1984) Guidelines for the measurement of phytoplankton primary production. Baltic Mar Biol 1:1–23

    Google Scholar 

  45. Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219

    Google Scholar 

  46. Norland S (1993) The relationship between biomass and volume of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton, pp 303–307

    Google Scholar 

  47. Odebrecht C, Caruso F (1987) Hidrografia e matéria particulada em suspensão na Lagoa da Conceição, Ilha de Santa Catarina, SC, Brasil. Atlântica 9:83–104

    Google Scholar 

  48. Overmann J, Fischer U, Pfennig N (1992) A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio-winogradskyi gen-nov and sp-nov. Arch Microbiol 157:329–335

    Article  CAS  Google Scholar 

  49. Parkin TB, Brock TD (1980) Photosynthetic bacterial production in lakes: the effects of light intensity. Limnol Oceanogr 25:711–718

    Article  Google Scholar 

  50. Ploug H, Kuhl M, Buchholz-Cleven B, Jorgensen BB (1997) Anoxic aggregates—an ephemeral phenomenon in the pelagic environment? Aquat Microb Ecol 13:285–294

    Article  Google Scholar 

  51. Schindler DW, Schmidt RV, Reid RA (1972) Acidification and bubbling as an alternative to filtration in determining phytoplankton production by the 14C method. J Fish Res 29:1627–1631

    CAS  Google Scholar 

  52. Sierra de Ledo B, Soriano-Sierra E (1994) Atributos e processos condicionantes da hidrodinâmica na Lagoa da Conceição, Ilha de Santa Catarina, Brasil. ACIESP 2:113–121

    Google Scholar 

  53. Strickland J, Parsons T (1972) A practical handbook of seawater analysis, 2nd edn. Fisheries Research Board of Canada, Ottawa

    Google Scholar 

  54. Suzuki MT, Christina MP, Francisco PC, Edward FD (2001) Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey Bay. Aquat Microb Ecol 24:117–127

    Article  Google Scholar 

  55. Taddei D, Cuet P, Frouin P, Esbelin C, Clavier J (2008) Low community photosynthetic quotient in coral reef sediments. CR Biol 331:668–677

    Article  Google Scholar 

  56. Takahashi M, Ichimura SE (1970) Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol Oceanogr 15:924–944

    Article  Google Scholar 

  57. Underwood AL (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University, Sidney

    Google Scholar 

  58. Utermohl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Verein Theor Angewandte Limnol 9:1–38

    Google Scholar 

  59. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci USA 105:15452–15457

    Article  CAS  PubMed  Google Scholar 

  60. Waidner LA, Kirchman DL (2007) Aerobic anoxygenic phototrophic bacteria attached to particles in turbid waters of the Delaware and Chesapeake estuaries. Appl Environ Microbiol 73:3936–3944

    Article  CAS  PubMed  Google Scholar 

  61. Waidner LA, Kirchman DL (2008) Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl Environ Microbiol 74:4012–4021

    Article  CAS  PubMed  Google Scholar 

  62. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    CAS  PubMed  Google Scholar 

  63. Zar JH (1999) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

We are grateful to A. Shu, T. G. Rosa, and A. da Silva for sampling assistance, T. Gandra for map editing assistance, and Dr. B. Spoganicz for sharing his laboratory and the help of his undergraduate students to process water samples. We wish to thank L. Yu for aid with the DGGE. Part of the research was funded by grant OCE-0550547 from the US National Science Foundation to MTS and from CAPES to PCA and MLSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luiza S. Fontes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontes, M.L.S., Suzuki, M.T., Cottrell, M.T. et al. Primary Production in a Subtropical Stratified Coastal Lagoon—Contribution of Anoxygenic Phototrophic Bacteria. Microb Ecol 61, 223–237 (2011). https://doi.org/10.1007/s00248-010-9739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9739-x

Keywords

Navigation