Skip to main content
Log in

Spatiotemporal Variation of Bacterial Assemblages in a Shallow Subtropical Coastal Lagoon in Southern Brazil

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 28 May 2009

Abstract

A study on the bacterioplankton of Conceição Lagoon (27°34′ S–48°27′ W), Southern Brazil, was carried out in July 2005 (austral winter) and January 2006 (austral summer) to characterize the bacterial spatiotemporal distribution and to determine the heterotrophic and photoautotrophic bacterial dominance in hypoxic/oxic stratified waters. Bacterial abundance increased significantly (p < 0.05) in summer with averages of coccus cyanobacteria (CCY) ranging from 1.02 × 105 (winter) to 3.21 × 106 cells mL−1 (summer), heterotrophic coccus/rod-shaped (HCR) cells from 7.00 × 104 to 3.60 × 106 cells mL−1, and heterotrophic filamentous (HF) bacteria from 2.90 × 103 to 2.74 × 105 cells mL−1. Bacterial biovolumes also increased in summer with mean biovolumes of CCY ranging from 0.38 to 1.37 μm3, HCR cells from 0.31 to 1.12 μm3, and HF from 3.32 to 11.34 μm3. Principal component analysis showed that salinity, temperature, and light were the abiotic factors that better explained the temporal variability of bacterial assemblages. Bacterial heterotrophy dominated in the lagoon, excepted by the southern and part of central sector in January 2006, when autotrophic-dominated microbial community occurred. Spatially, bacterial assemblages were influenced by nutrient gradient, oxygen, and salinity with a positive relationship between biovolumes and nutrients and a negative relationship between abundance of coccus cyanobacteria and nutrients. area revealed a singular temporal pattern with hypoxic bottom waters in winter and oxygen-rich waters appearing in summer related with the availability of light and predominant microbes. Thus, oxygen consumption/production is likely to be regulated by the amount of light reaching the bottom, stimulating the production of oxygen by oxygenic phototrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abreu PC, Biddanda BB, Odebrecht C (1992) Bacterial dynamics of the Patos Lagoon estuary, Southern Brazil (32° S; 52° W): relationship with phytoplankton production and suspended material. Estuar Coast Shelf Sci 35:621–635

    Article  Google Scholar 

  2. Abreu PC, Granéli HW, Odebrecht C (1995) Produção fitoplanctônica e bacteriana naregião da pluma estuarina da Lagoa dos Patos–RS, Brasil. Atlântica 17:35–52

    Google Scholar 

  3. Azam F, Fenchel T, Gray JG, Meyer-Reil LA, Thingstad T (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  4. Bergondo DL, Kester DR, Stoffel HE, Woods WL (2005) Time-series observations during the low sub-surface oxygen events in Narragansett Bay during summer 2001. Mar Chem 97:90–103

    Article  CAS  Google Scholar 

  5. Berman T, Parparov A, Yacobi YZ (2004) Planktonic community production and respiration and the impact of bacteria on carbon cycling in the photic zone of Lake Kinneret. Aquat Microb Ecol 34:43–55

    Article  Google Scholar 

  6. Borsuk ME, Stow CA, Luettich RA, Paerl HW, Pinckney JL (2001) Modelling oxygen dynamics in an intermittently stratified estuary: estimation of process rates using field data. Estuar Coast Shelf Sci 52:33–49

    Article  CAS  Google Scholar 

  7. Bouvier T, del Giorgio PA (2007) Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol 9:287–297

    Article  PubMed  CAS  Google Scholar 

  8. Breitbart M, Middelboe M, Rohwer F (2008) Marine viruses: community dynamics, diversity and impact on microbial processes. In: Kirchman DL (ed) Microbial ecology of the oceans. 2nd edn. Wiley, Hoboken, NJ, pp 443–481

    Google Scholar 

  9. Caron DA (1994) Inorganic nutrients, bacteria, and the microbial loop. Microb Ecol 28:295–298

    Article  CAS  Google Scholar 

  10. Castel J, Caumette P, Herbert R (1996) Eutrophication gradients in coastal lagoons as exemplified by the Bassin d’ Arcachon and the Étang du Prévost. Hydrobiologia 329:9–27

    Article  Google Scholar 

  11. Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105–121

    Article  CAS  Google Scholar 

  12. Cottrell MT, Kirchman DL (2004) Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquat Microb Ecol 34:139–149

    Article  Google Scholar 

  13. Crump BC, Peranteau C, Beckingham B, Cornwel JC (2007) Respiratory succession and community succession of bacterioplankton in seasonally anoxic estuarine waters. Appl Environ Microbiol 73:6802–6810

    Article  PubMed  CAS  Google Scholar 

  14. Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioral responses of benthic macrofauna. Oceanogr Mar Biol 33:245–303

    Google Scholar 

  15. Fonseca AL, Braga ES (2006) Temporal dynamic of the dissolved nutrients and the eutrophization processes in a Southern Brazilian coastal lagoon, Conceição Lagoon. J Coast Res 39:1229–1233

    Google Scholar 

  16. Fonseca AL (2006) Effects of urban drainage on the physico-chemical and biological characteristics of surface water in Conceição Lagoon (Florianópolis, SC, Brazil). Biotemas 19:7–16

    Google Scholar 

  17. Fontes MLS, Cavellucci R, Laurenti A, Machado EC, Camargo MG, Brandini N (2006) Detection of environmental impact on variations in dissolved nutrients and Chl-a in the Conceição Lagoon, Florianópolis, SC, Brazil. J Coast Res 39:1407–1412

    Google Scholar 

  18. Goldman JC, Caron DA, Dennett MR (1987) Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol Oceanogr 32:1239–1252

    CAS  Google Scholar 

  19. Gonzalez AM, Paranhos R, Lutterbach MS (2006) Heterotrophic bactéria abundances in Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil). Braz J Microbiol 37:428–433

    Article  CAS  Google Scholar 

  20. Grasshoff K, Ehrhardt M, Kremling K (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH, New York, pp 159–228

    Google Scholar 

  21. Hahn MW, Hofle MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35:113–121

    Article  PubMed  CAS  Google Scholar 

  22. Harrison WG, Wood LJE (1988) Inorganic nitrogen uptake by marine picoplankton: evidence for size partitioning. Limnol Oceanogr 33:468–475

    CAS  Google Scholar 

  23. Heijs SK, Azzoni R, Giordani G, Jonkers HM, Nizzoli D, Viaroli P, van-Gemerden H (2000) Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquat Microb Ecol 23:85–95

    Article  Google Scholar 

  24. Hobbie JE, Daley RJ, Jasper J (1977) Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228

    PubMed  CAS  Google Scholar 

  25. Holmes RW (1970) The Secchi disk in turbid coastal waters. Limnol Oceanogr 15:688–694

    Google Scholar 

  26. Jürgens K, Güde H (1994) The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser 112:169–188

    Article  Google Scholar 

  27. Kirchman DL (1994) The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol 28:255–271

    Article  CAS  Google Scholar 

  28. Kirchman DL (2000) Uptake and regeneration of inorganic nutrients by marine heterotrophic bacteria. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 261–288

    Google Scholar 

  29. Kirk JTO (1983) Light and photosynthesis in aquatic ecosystem. Cambridge University Press, Cambridge, pp 38–39

    Google Scholar 

  30. Kjerfve B (1986) Comparative oceanography of coastal lagoons. In: Wolf DA (ed) Estuarine variability. Academic, New York, pp 63–81

    Google Scholar 

  31. Knoppers BA, Opitz SS, Souza MP, Miguez CF (1984) The spatial distribution of particulate organic matter and some physical and chemical water properties in Conceição Lagoon; Santa Catarina, Brazil (July 19, 1982). Braz Arch Biol Technol 27:59–77

    CAS  Google Scholar 

  32. Lutterbach MTS, Vasquez JC, Pinet JA, Andreata JV, da Silva AC (2001) Monitoring and spatial distribution of heterotrophic bacteria and fecal coliforms in the Rodrigo de Freitas Lagoon, Rio de Janeiro. Braz Arch Biol Technol 44:7–13

    Article  Google Scholar 

  33. Lymer D, Lindstro ES, Vrede K (2008) Variable importance of viral-induced bacterial mortality along gradients of trophic status and humic content in lakes. Freshw Biol 53:1101–1113

    Article  CAS  Google Scholar 

  34. Kolm HE, Andretta L (2003) Bacterioplankton in different tides of the Pereque tidal creek, Pontal do Sul, Parana, Brazil. Braz J Microbiol 34:97–103

    Article  Google Scholar 

  35. McCree KJ (1981) Photosynthetically active radiation. In: Lange OL, Nobel P, Osmond B, Ziegler H (eds) Physiological plant ecology, vol. 12A, encyclopedia of plant physiology (new series). Springer, Berlin, pp 41–55

    Google Scholar 

  36. Maclsaac EA, Stockner JG (1993) Enumeration of phototrophic picoplankton by autofluorescence. In: Kemp PF, Sherr BF, Sherr EB, Cole (eds) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton, FL, pp 187–197

    Google Scholar 

  37. Mainly BFJ (1995) Multivariate statistical methods: a primer, 2nd edn. Chapman & Hall, London, pp 76–92

    Google Scholar 

  38. Massana R, Gasol JM, Bjornsen PK, Blackburn N, Hagström A, Hietanen S, Hygum BH, Kuparinen J, Pedrós-Alió C (1997) Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Sci Mar 61:397–407

    Google Scholar 

  39. McCarthy MJ, McNeal KS, Morse JW, Gardner WS (2008) Bottom-water hypoxia effects on sediment–water interface nitrogen transformations in a seasonally hypoxic, shallow bay (Corpus Christi Bay, TX, USA). Estuaries and Coasts 31:521–531

    Article  CAS  Google Scholar 

  40. Miller DC, Poucher SL, Coiro L (2002) Determination of lethal dissolved oxygen levels for selected marine and estuarine fishes, crustaceans and a bivalve. Mar Biol 140:287–296

    Article  Google Scholar 

  41. Moebus K (1992) Further investigations on the concentration of marine bacteriophages in the water around Helgoland, with reference to the phage-host systems encountered. Helgol Meeresunters 46:275–292

    Article  Google Scholar 

  42. Muehe D, Gomes FC Jr (1989) Batimetria e algumas considerações sobre a evolução geológica da Lagoa da Conceição, Ilha de Santa Catarina. Geosul 49:32–44

    Google Scholar 

  43. Muylaert K, van der Gucht K, Vloemans N, de Meester L, Gillis M, Vyverman W (2002) Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl Environ Microbiol 68:4740–4750

    Article  PubMed  CAS  Google Scholar 

  44. Nixon SW (1995) Coastal marine eutrophication: definition, social causes, and future concerns. Ophelia 41:199–219

    Google Scholar 

  45. Odebrecht C (1988) Variações espaciais e sazonais do fitoplâncton, protozooplâncton e metazooplâncton na Lagoa da Conceição, Ilha de Santa Catarina, Brasil. Atlântica 10:21–40

    Google Scholar 

  46. Odebrecht C, Gomes FC Jr (1987) Hidrografia e matéria particulada em suspensão na Lagoa da Conceição, ilha de Santa Catarina, SC, Brasil. Atlântica 9:83–104

    Google Scholar 

  47. Ovreas L, Bourne D, Sandaa RA, Casamayor EO, Benlloch S, Goddard V, Smerdon G, Heldal M, Thingstad TF (2003) Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms. Aquat Microb Ecol 31:109–121

    Article  Google Scholar 

  48. Pace ML, Cole JJ (1994) Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microb Ecol 28:181–193

    Article  Google Scholar 

  49. Pernthaler J, Zollner E, Warnecke F, Jurgens K (2004) Bloom of filamentous bacteria in a mesotrophic lake: identity and potential controlling mechanism. Appl Environ Microbiol 70:6272–6281

    Article  PubMed  CAS  Google Scholar 

  50. Psenner R, Sommaruga R (1992) Are rapid changes in bacterial biomass caused by shifts from top-down to bottom-up control? Limnol Oceanogr 37:1092–1100

    Article  Google Scholar 

  51. Sierra de Ledo B, Soriano-Sierra EJ (1994) Atributos e processos condicionantes da hidrodinâmica na Lagoa da Conceição, Ilha de Santa Catarina, Brasil. ACIESP 2:113–121

    Google Scholar 

  52. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New York, pp 555–608

    Google Scholar 

  53. Sokoletsky L (2003) In situ and remote sensing bio-optical methods for the estimation of phytoplankton concentration in the Gulf of Aqaba (Eilat). Bar-Ilan University, p 240

  54. Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer series in statistics. Springer, New York, p 243

    Google Scholar 

  55. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, bulletin 167, 2nd edn. Fisheries Research Board of Canada, Ottawa, p 310

    Google Scholar 

  56. Tijdens M, van de Waal DB, Slovackova H, Hoogveld HL, Gons HJ (2008) Estimates of bacterial and phytoplankton mortality caused by viral lysis and microzooplankton grazing in a shallow eutrophic lake. Freshw Biol 53:1126–1141

    Article  Google Scholar 

  57. Underwood AJ (1997) Experiments in ecology: their logic design and interpretation using analysis of variance. Cambridge University Press, Cambridge, UK, pp 140–197

    Google Scholar 

  58. Vacelet E, Arnoux A, Thomassin BA, Travers M (1999) Influence of freshwater and terrigenous material on nutrients, bacteria and phytoplankton in a high island lagoon: Mayotte, Comoro Archipelago, Indian Ocean. Hydrobiologia 380:165–178

    Article  Google Scholar 

  59. Weinbauer MG, Hornak K, Jezbera J, Nedoma J, Dolan JR, Simek K (2007) Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity. Environ Microbiol 9:777–788

    Article  PubMed  CAS  Google Scholar 

  60. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and phaeopigments. Limnol Oceanogr 39:1985–1992

    CAS  Google Scholar 

  61. Wheeler PA, Kirchman D (1986) Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol Oceanogr 31:998–1009

    CAS  Google Scholar 

  62. Wommack K, Colwell R (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  PubMed  CAS  Google Scholar 

  63. Zhang R, Weinbauer MG, Qian PY (2007) Viruses and flagellates sustain apparent richness and reduce biomass accumulation of bacterioplankton in coastal marine waters. Environ Microbiol 9:3008–3018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Grupo de Busca e Salvamento (GBS) of Florianópolis County and Alan da Silva (Restaurante Costa Leste) for the logistic support during field work. We thank Ângela Shu and Tiago for their assistance in the field work and in the laboratory of Dr. Bruno Spoganicz (Universidade Federal de Santa Catarina). We thank Tiffany Straza, Dr. D. Kirchman (University of Delaware) and three anonymous reviewers for their criticisms and suggestions. This research was supported by a grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Brazil. P.C. Abreu is a research fellow from the CNPq—Brazilian Ministry of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luiza Schmitz Fontes.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00248-009-9530-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontes, M.L.S., Abreu, P.C. Spatiotemporal Variation of Bacterial Assemblages in a Shallow Subtropical Coastal Lagoon in Southern Brazil. Microb Ecol 58, 140–152 (2009). https://doi.org/10.1007/s00248-008-9454-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9454-z

Keywords

Navigation