Skip to main content
Log in

Oribatid Mites as Potential Vectors for Soil Microfungi: Study of Mite-Associated Fungal Species

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The ability of soil-living oribatid mites to disperse fungal propagules on their bodies was investigated. Classical plating methods were applied to cultivate these fungi and to study their morphology. Molecular markers were used for further determination. The nuclear ribosomal large subunit and the nuclear ribosomal internal transcribed spacer of DNA extracts of the cultured fungi as well as total DNA extracts of the mites themselves, also containing fungal DNA, were amplified and sequenced. Based on phylogenetic analysis, a total of 31 fungal species from major fungal groups were found to be associated with oribatid mites, indicating that mites do not selectively disperse specific species or species groups. The detected taxa were mainly saprobiontic, cosmopolitan (e.g., Alternaria tenuissima), but also parasitic fungi (Beauveria bassiana) for whose dispersal oribatid mites might play an important role. In contrast, no mycorrhizal fungi were detected in association with oribatid mites, indicating that their propagules are dispersed in a different way. In addition, fungi that are known to be a preferred food for oribatid mites such as the Dematiacea were not detected in high numbers. Results of this study point to the potential of oribatid mites to disperse fungal taxa in soil and indicate that co-evolutionary patterns between oribatid mites and their associated fungi might be rare or even missing in most cases, since we only detected ubiquitous taxa attached to the mites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. MF Allen (1987) ArticleTitleRe-establishment of mycorrhizas on Mount St Helens: migration vectors Trans Br Mycol Soc 88 413–417 Occurrence Handle10.1016/S0007-1536(87)80019-0

    Article  Google Scholar 

  2. SF Altschul TL Madden AA Schäffer J Zhang Z Zhang W Miller DJ Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res 25 3389–3402 Occurrence Handle9254694 Occurrence Handle10.1093/nar/25.17.3389 Occurrence Handle1:CAS:528:DyaK2sXlvFyhu7w%3D

    Article  PubMed  CAS  Google Scholar 

  3. JH Andrews (1991) Comparative Ecology of Microorganisms and Macroorganisms Springer Berlin, Heidelberg, New York

    Google Scholar 

  4. von Arx, JA (1981) The Genera of Fungi Sporulating in Pure Culture, 3rd ed. J. Cramer, Vaduz.

  5. Barnett, HL, Hunter, BB (1998) Illustrated Genera of Imperfect Fungi. 4th ed. APS, St. Paul.

  6. VM Behan SB Hill (1978) ArticleTitleFeeding habits and spore dispersal of oribatid mites in the North American arctic Rev Ecol Biol Sol 15 497–516

    Google Scholar 

  7. VM Behan-Pelletier SB Hill (1983) ArticleTitleFeeding habits of sixteen species of Oribatei (Acari) from an acid peat bog, Glenamoy, Ireland Rev Ecol Biol Sol 20 221–267

    Google Scholar 

  8. F Bernini (1986) ArticleTitleCurrent ideas on the phylogeny and adaptive radiation of Acarida Boll Zool 53 279–313

    Google Scholar 

  9. PL Berthet (1964) ArticleTitleField study of the mobility of Oribatei (Acari), using radioactive tagging J Anim Ecol 33 443–449

    Google Scholar 

  10. S Bertolino A Vizzini LA Wauters G Tosi (2004) ArticleTitleConsumption of hypogeous and epigeous fungi by red squirrel (Sciurus vulgaris) in subalpine conifer forests Forest Ecol Manag 202 227–233

    Google Scholar 

  11. M Blackwell D Malloch (1991) ArticleTitleLife-history and arthropod dispersal of a coprophilous-stylophage Mycologia 83 360–366

    Google Scholar 

  12. T Boeckhout (1995) ArticleTitle Pseudozyma Bandoni emend. Boekhout, a genus for yeast-like anamorphs of Ustilaginales J Gen Appl Microbiol 41 359–366

    Google Scholar 

  13. T Boeckhout B Theelen J Houbraken V Robert G Scorzetti A Gafni U Gerson A Sztejnberg (2003) ArticleTitleNovel anamorphic mite-associated fungi belonging to the Ustilaginomycetes: Meira geulakonigii gen. nov., sp. nov., Meira argovae sp. nov. and Acaromyces ingoldii gen. nov., sp. nov Int J Syst Evol Microbiol 53 1655–1664

    Google Scholar 

  14. JW Buck JH Andrews (1999) ArticleTitleAttachment of the yeast Rhodosporidium toruloides is mediated by adhesives localized at sites of bud cell development Appl Environ Microb 65 465–471 Occurrence Handle1:CAS:528:DyaK1MXpvFCmuw%3D%3D

    CAS  Google Scholar 

  15. JW Carmichael WB Kendrick IL Conners L Sigler (1980) Genera of Hyphomycetes University of Alberta Press, Edmonton

    Google Scholar 

  16. AA Christen (1975) ArticleTitleSome fungi associated with Collembola Rev Ecol Biol Sol 12 723–728

    Google Scholar 

  17. M Christensen (1989) ArticleTitleA view of fungal ecology Mycologia 81 1–19

    Google Scholar 

  18. W Colgan AW Claridge (2002) ArticleTitleMycorrhizal effectiveness of Rhizopogon spores recovered from faecal pellets of small forest-dwelling mammals Mycol Res 106 314–320 Occurrence Handle10.1017/S0953756202005634

    Article  Google Scholar 

  19. EF Dijkstra JJ Boon JM Mourik ParticleVan (1998) ArticleTitleAnalytical pyrolysis of a soil profile under Scots pine Eur J Soil Sci 49 295–304 Occurrence Handle10.1046/j.1365-2389.1998.00164.x

    Article  Google Scholar 

  20. NJ Dix J Webster (1995) Fungal Ecology Chapman and Hall London

    Google Scholar 

  21. KH Domsch W Gams TH Anderson (1993) Compendium of soil fungi, Vols. 1 and 2 IHW Eching

    Google Scholar 

  22. JJ Doyle JL Doyle (1990) ArticleTitleIsolation of plant DNA from fresh tissue Focus 12 13–15

    Google Scholar 

  23. C Drechsler (1941) ArticleTitleSome hyphomycetes parasitic on free-living terricolous nematodes Phytopathology 31 773–802

    Google Scholar 

  24. KM Dromph (2001) ArticleTitleDispersal of entomopathogenic fungi by colembolans Soil Biol Biochem 33 2047–2051 Occurrence Handle1:CAS:528:DC%2BD3MXnvFCnsL0%3D

    CAS  Google Scholar 

  25. AZ Farahat (1966) ArticleTitleStudies on the influence of some fungi on Collembola and Acari Pedobiologia 6 258–268

    Google Scholar 

  26. AC Fogaça PI Silva Particleda MTM Miranda AG Bianchi A Miranda PEM Ribolla S Daffre (1999) ArticleTitleAntimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus J Biol Chem 274 25330–25334 Occurrence Handle10464258

    PubMed  Google Scholar 

  27. KL Fourman (1936) ArticleTitleKleintierwelt, Kleinklima und Mikroklima in Beziehung zur Kennzeichnung des forstlichen Standorts und der Bestandesabfallzersetzung auf bodenbiologischer Grundlage Mitt Forstwirtsch Forstwiss 1936 596–615

    Google Scholar 

  28. M Gadgil (1971) ArticleTitleDispersal: population consequences to evolution Ecology 52 253–261

    Google Scholar 

  29. W Gams (1993) Supplement and Corrigendum to the Compendium of Soil Fungi IHW Eching

    Google Scholar 

  30. CA Gehring JE Wolf TC Theimer (2002) ArticleTitleTerrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in a rain forest soil Ecol Lett 5 540–548 Occurrence Handle10.1046/j.1461-0248.2002.00353.x

    Article  Google Scholar 

  31. H Große-Brauckmann G Große-Brauckmann (1977) ArticleTitleMakromyzeten des vorderen und hinteren Odenwaldes (ein floristischer Vergleich) Z Pilzkunde 43 59–74

    Google Scholar 

  32. TA Hall (1999) ArticleTitleBioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic Acids Symp Ser 41 95–98 Occurrence Handle1:CAS:528:DC%2BD3cXhtVyjs7Y%3D

    CAS  Google Scholar 

  33. RDG Hanlon (1981) ArticleTitleInfluence of grazing by Collembola on the activity of senescent fungal colonies grown on media of different nutrient concentrations Oikos 36 362–367

    Google Scholar 

  34. RDG Hanlon JM Anderson (1979) ArticleTitleThe effects of Collembola grazing on microbial activity in decomposing leaf litter Oecologia 38 93–99 Occurrence Handle10.1007/BF00347827

    Article  Google Scholar 

  35. KM Harinikumar DJ Bagyaraj (1994) ArticleTitlePotential of earthworms, ants, millipedes, and termites for dissemination of vesicular–arbuscular mycorrhizal fungi in soil Biol Fertil Soils 18 115–118 Occurrence Handle10.1007/BF00336456

    Article  Google Scholar 

  36. JL Harper (1981) The meanings of rarity H Synge (Eds) The Biological Aspects of Rare Plant Conservation Wiley New York 189–203

    Google Scholar 

  37. J Hubert V Šustr J Smrž (1999) ArticleTitleFeeding of the oribatid mite Scheloribates laevigatus (Acari: Oribatida) in laboratory experiments Pedobiologia 43 328–339

    Google Scholar 

  38. J Hubert M Žilová S Pekár (2001) ArticleTitleFeeding preferences and gut contents of three panphytophagous oribatid mites (Acari: Oribatida) Eur J Soil Biol 37 197–208 Occurrence Handle10.1016/S1164-5563(01)01083-4

    Article  Google Scholar 

  39. AP Jacot (1930) ArticleTitleMoss-mites as spore-bearers Mycologia 22 94–96

    Google Scholar 

  40. D Kempson M Lloyd R Ghelardi (1963) ArticleTitleA new extractor for woodland litter Pedobiologia 3 1–21

    Google Scholar 

  41. PM Kirk PF Cannon JC David JA Stalpers (2001) Ainsworth & Bisby's Dictionary of the Fungi EditionNumber9th ed. CABI Publishing Oxon

    Google Scholar 

  42. JN Klironomos P Moutoglis (1999) ArticleTitleColonization of non-mycorrhizal plants by mycorrhizal neighbours as influenced bythe collembolan, Folsomia candida Biol Fertil Soils 29 277–281 Occurrence Handle10.1007/s003740050553

    Article  Google Scholar 

  43. A Macfayden (1961) ArticleTitleImproved funnel-type extractors for soil arthropods J Anim Ecol 30 171–184

    Google Scholar 

  44. SA Mangan GH Adler (2002) ArticleTitleSeasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forest Oecologia 131 587–597 Occurrence Handle10.1007/s00442-002-0907-7

    Article  Google Scholar 

  45. M Maraun S Migge M Schaefer S Scheu (1998) ArticleTitleSelection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forests Pedobiologia 42 232–240

    Google Scholar 

  46. M Maraun S Visser S Scheu (1998) ArticleTitleOribatid mites enhance the recovery of the microbial community after a strong disturbance Appl Soil Ecol 9 175–181 Occurrence Handle10.1016/S0929-1393(98)00072-9

    Article  Google Scholar 

  47. M Maraun S Scheu (2000) ArticleTitleThe structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research Ecography 23 374–383 Occurrence Handle10.1034/j.1600-0587.2000.d01-1647.x

    Article  Google Scholar 

  48. M Maraun H Martens S Migge A Theenhaus S Scheu (2003) ArticleTitleAdding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates Eur J Soil Biol 39 85–95 Occurrence Handle10.1016/S1164-5563(03)00006-2

    Article  Google Scholar 

  49. M Maraun J-A Salamon K Schneider M Schaefer S Scheu (2003) ArticleTitleOribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations Soil Biol Biochem 35 1387–1394 Occurrence Handle10.1016/S0038-0717(03)00218-9 Occurrence Handle1:CAS:528:DC%2BD3sXntVGnur4%3D

    Article  CAS  Google Scholar 

  50. MA McLean N Kaneko D Parkinson (1996) ArticleTitleDoes selective grazing by mites and collembolan affect litter fungal community structure? Pedobiologia 40 97–105

    Google Scholar 

  51. FA Meier S Scherrer R Honegger (2002) ArticleTitleFaecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola Biol J Linn Soc 76 259–268 Occurrence Handle10.1046/j.1095-8312.2002.00065.x

    Article  Google Scholar 

  52. MJ Mitchell (1978) ArticleTitleVertical and horizontal distributions of oribatid mites (Acari: Cryptostigmata) in an aspen woodland soil Ecology 59 516–525

    Google Scholar 

  53. TD Paine KF Raffa TC Harrington (1997) ArticleTitleInteractions among scolytid bark beetles, their associated fungi, and live host conifers Annu Rev Entomol 42 179–206 Occurrence Handle15012312 Occurrence Handle10.1146/annurev.ento.42.1.179 Occurrence Handle1:CAS:528:DyaK2sXjvFSlsw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  54. YD Pande P Berthet (1973) ArticleTitleStudies on the food and feeding habits of soil Oribatei in a black pine plantation Oecologia 12 413–426 Occurrence Handle10.1007/BF00345051

    Article  Google Scholar 

  55. DA Pherson AJ Beattie (1979) ArticleTitleFungal loads of invertebrates in beech leaf litter Rev Ecol Biol Sol 16 325–335

    Google Scholar 

  56. JF Ponge MJ Charpentie (1981) ArticleTitleÉtude des relations microflore–microfaune: expériences sur Pseudosinella alba (Packard), Collembole mycophage Rev Ecol Biol Sol 18 291–303

    Google Scholar 

  57. ML Rantalainen H Fritze J Haimi O Kiikkilä T Pennanen H Setälä (2004) ArticleTitleDo enchytraeid worms and habitat corridors facilitate the colonisation of habitat patches by soil microbes Biol Fertil Soils 39 200–208 Occurrence Handle10.1007/s00374-003-0687-1

    Article  Google Scholar 

  58. C Renker J Alphei F Buscot (2003) ArticleTitleSoil nematodes associated with the mammal pathogenic fungal genus Malassezia (Basidiomycota: Ustilaginomycetes) in Central European forests Biol Fertil Soils 37 70–72 Occurrence Handle1:CAS:528:DC%2BD3sXntV2itg%3D%3D

    CAS  Google Scholar 

  59. S Scheu (1993) ArticleTitleLitter microflora—soil macrofauna interactions in lignin decomposition: a laboratory experiment with 14C-labelled lignin Soil Biol Biochem 25 1703–1711 Occurrence Handle10.1016/0038-0717(93)90173-9 Occurrence Handle1:CAS:528:DyaK2cXltlOiuw%3D%3D

    Article  CAS  Google Scholar 

  60. S Scheu E Schulz (1996) ArticleTitleSecondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates Biodivers Conserv 5 235–250 Occurrence Handle10.1007/BF00055833

    Article  Google Scholar 

  61. K Schneider S Migge RA Norton S Scheu R Langel A Reineking M Maraun (2004) ArticleTitleTrophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N) Soil Biol Biochem 36 1769–1774 Occurrence Handle10.1016/j.soilbio.2004.04.033 Occurrence Handle1:CAS:528:DC%2BD2cXnslKhtb4%3D

    Article  CAS  Google Scholar 

  62. K Schneider M Maraun (2005) ArticleTitleFeeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari) Pedobiologia 49 61–67 Occurrence Handle10.1016/j.pedobi.2004.07.010

    Article  Google Scholar 

  63. MAA Schipper (1978) ArticleTitle1. On certain species of Mucor with a key to all accepted species. 2. On the genera Rhizomucor and Parasitella Stud Mycol 17 1–71

    Google Scholar 

  64. R Schuster (1956) ArticleTitleDer Anteil der Oribatiden an den Zersetzungsvorgängen im Boden Z Morph Ökol Tiere 45 1–33 Occurrence Handle10.1007/BF00699814

    Article  Google Scholar 

  65. P Skubala (1999) ArticleTitleColonization of a dolomitic dump by oribatid mites (Acari, Oribatida) Pedobiologia 43 145–159

    Google Scholar 

  66. SE Smith DJ Read (1997) Mycorrhizal Symbiosis EditionNumber2nd ed. Academic Press San Diego

    Google Scholar 

  67. O Stefaniak S Seniczak (1976) ArticleTitleThe microflora of the alimentary canal of Achipteria coleoptrata (Acarina, Oribatei) Pedobiologia 16 185–194

    Google Scholar 

  68. O Stefaniak S Seniczak (1981) ArticleTitleThe effect of fungal diet on the development of Oppia nitens (Acari, Oribatei) and on the microflora of its alimentary tract Pedobiologia 21 202–210

    Google Scholar 

  69. K Strenzke (1952) ArticleTitleUntersuchungen über die Tiergemeinschaften des Bodens: Die Oribatiden und ihre Synusien in den Böden Norddeutschlands Zoologica 37 1–137

    Google Scholar 

  70. DL Swofford (2003) Paup*. Phylogenetic Analysis Using Parsimony (*and other Methods), Ver. 4.0b10 Sinauer Associates Sunderland, MA

    Google Scholar 

  71. J Drift ParticleVan der (1965) The effect of animal activity in the litter EG Hallsworth DV Crawford (Eds) Experimental Pedology Butterworth London 227–235

    Google Scholar 

  72. S Visser (1985) Role of soil invertebrates in determining the composition of soil microbial communities AH Fitter D Atkinson DJ Read MB Usher (Eds) Ecological Interactions in Soil. Plants, Microbes and Animals Blackwell Oxford 297–317

    Google Scholar 

  73. S Visser D Parkinson M Hassall (1987) ArticleTitleFungi associated with Onychiurus subtenuis (Collembola) in an aspen woodland Can J Bot 65 635–642 Occurrence Handle10.1139/b87-083

    Article  Google Scholar 

  74. S Visser JB Whittaker D Parkinson (1981) ArticleTitleEffects of collembolan grazing on nutrient release and respiration of a leaf litter inhabiting fungus Soil Biol Biochem 13 215–218 Occurrence Handle10.1016/0038-0717(81)90023-7 Occurrence Handle1:CAS:528:DyaL3MXltlWmuro%3D

    Article  CAS  Google Scholar 

  75. P Volz (1935) ArticleTitleUntersuchungen über Mikroschichtung der Fauna von Waldböden Zool Jahrb Abt Syst Ökol Geogr 66 153–210

    Google Scholar 

  76. JA Wallwork (1983) ArticleTitleOribatids in forest ecosystems Annu Rev Entomol 28 109–130 Occurrence Handle10.1146/annurev.en.28.010183.000545

    Article  Google Scholar 

  77. NJ Warner MF Allen JA MacMahon (1987) ArticleTitleDispersal agents of vesicular–arbuscular mycorrhizal fungi in a disturbed arid ecosystem Mycologia 79 721–730

    Google Scholar 

  78. RH Zaidi Z Jaal NJ Hawkes J Hemingway WOC Symondson (1999) ArticleTitleCan multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8 2081–2087 Occurrence Handle10632859 Occurrence Handle10.1046/j.1365-294x.1999.00823.x Occurrence Handle1:CAS:528:DC%2BD3cXpvF2ltg%3D%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Claudia Krüger for her help with the cultivation of the fungi isolated from the oribatid mites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Renker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renker, C., Otto, P., Schneider, K. et al. Oribatid Mites as Potential Vectors for Soil Microfungi: Study of Mite-Associated Fungal Species. Microb Ecol 50, 518–528 (2005). https://doi.org/10.1007/s00248-005-5017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-005-5017-8

Keywords

Navigation