Skip to main content

Advertisement

Log in

Pediatric three-dimensional quantitative cardiovascular computed tomography

  • ESPR 2024, Seville
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

High-resolution, isotropic, 3-dimensional (D) data from pediatric cardiovascular computed tomography (CT) offer great potential for the accurate quantitative evaluation of pediatric cardiovascular and pulmonary vascular diseases. Recent pilot studies using pediatric 3-D cardiovascular CT have shown promising results in assessing cardiac function in conditions such as tetralogy of Fallot, cardiac defects with a hypoplastic ventricle, Ebstein anomaly, and in quantifying myocardial mass. In addition, the quantitative assessment of pulmonary vascularity is useful for evaluating differential right-to-left pulmonary vascular volume ratio, the effectiveness of pulmonary angioplasty, and predicting pulmonary hypertension. These initial experiences could broaden the role of pediatric cardiovascular CT in clinical practice. Furthermore, the current barriers to its widespread use, pertinent solutions to these problems, and new applications are discussed. In this review, the 3-D quantitative evaluations of cardiac function and pulmonary vascularity using high-resolution pediatric cardiovascular CT data are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be available upon reasonable request.

References

  1. Goo HW, Park IS, Ko JK et al (2003) CT of congenital heart disease: normal anatomy and typical pathologic conditions. Radiographics 23:S147–S165

    Article  PubMed  Google Scholar 

  2. Goo HW, Siripornpitak S, Chen S et al (2021) Pediatric cardiothoracic computed tomography guideline provided by the Asian Society of Cardiovascular Imaging (ASCI) Congenital Heart Disease Study Group: Part 2. Contemporary clinical applications. Korean J Radiol 22:1397–1415

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hofmann LK, Becker CR, Flohr T, Schoepf UJ (2003) Multidetector-row CT of the heart. Semin Roentgenol 38:135–145

    Article  PubMed  Google Scholar 

  4. Goo HW, Yang DH (2010) Coronary artery visibility in free-breathing young children with congenital heart disease on cardiac 64-slice CT: dual-source ECG-triggered sequential scan vs. single-source non-ECG-synchronized spiral scan. Pediatr Radiol 40:1670–1680

    Article  PubMed  Google Scholar 

  5. Pache G, Grohmann J, Bulla S et al (2011) Prospective electrocardiography-triggered CT angiography of the great thoracic vessels in infants and toddlers with congenital heart disease: feasibility and image quality. Eur J Radiol 80:e440–e445

    Article  PubMed  Google Scholar 

  6. Nakagawa M, Ozawa Y, Nomura N et al (2016) Utility of dual source CT with ECG-triggered high-pitch spiral acquisition (Flash Spiral Cardio mode) to evaluate morphological features of ventricles in children with complex congenital heart defects. Jpn J Radiol 34:284–291

    Article  PubMed  Google Scholar 

  7. Hui PKT, Goo HW, Du J et al (2017) Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD). Pediatr Radiol 47:899–910

    Article  PubMed  Google Scholar 

  8. Rigsby CK, McKenney SE, Hill KD et al (2018) Radiation dose management for pediatric cardiac computed tomography: a report from the Image Gently ‘Have-A-Heart’ campaign. Pediatr Radiol 48:5–20

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hong SW, Goo HW, Maeda E et al (2019) User-friendly, vendor-specific guideline for pediatric cardiothoracic computed tomography provided by the Asian Society of Cardiovascular Imaging (ASCI) Congenital Heart Disease Study Group: Part 1. Imaging techniques. Korean J Radiol 20:190–204

    Article  PubMed  Google Scholar 

  10. Francone M, Gimelli A, Budde RPJ et al (2022) Radiation safety for cardiovascular computed tomography imaging in paediatric cardiology: a joint expert consensus document of the EACVI, ESCR, AEPC, and ESPR. Eur Heart J Cardiovasc Imaging 23:e279–e289

    Article  PubMed  Google Scholar 

  11. Horst KK, Yu L, McCollough CH et al (2023) Potential benefits of photon counting detector computed tomography in pediatric imaging. Br J Radiol 96:20230189

    Article  PubMed  Google Scholar 

  12. Juergens KU, Grude M, Maintz D et al (2004) Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology 230:403–410

    Article  PubMed  Google Scholar 

  13. Goo HW, Park SH (2015) Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction. Int J Cardiovasc Imaging 31(Suppl 2):223–232

    Article  PubMed  Google Scholar 

  14. Goo HW (2017) Myocardial delayed enhancement CT: initial experience in children and young adults. Pediatr Radiol 47:1452–1462

    Article  PubMed  Google Scholar 

  15. Takx RA, Moscariello A, Schoepf UJ et al (2012) Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol 81:e598–e604

    Article  PubMed  Google Scholar 

  16. Kim JY, Suh YJ, Han K et al (2020) Cardiac CT for measurement of right ventricular volume and function in comparison with cardiac MRI: a meta-analysis. Korean J Radiol 21:450–461

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sugeng L, Mor-Avi V, Weinert L et al (2010) Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging 3:10–18

    Article  PubMed  Google Scholar 

  18. Retson TA, Masutani EM, Golden D, Hsiao A (2020) Clinical performance and role of expert supervision of deep learning for cardiac ventricular volumetry: a validation study. Radiol Artif Intell 2:e190064

    Article  PubMed  PubMed Central  Google Scholar 

  19. Koch K, Oellig F, Oberholzer K et al (2005) Assessment of right ventricular function by 16-detector-row CT: comparison with magnetic resonance imaging. Eur Radiol 15:312–318

    Article  CAS  PubMed  Google Scholar 

  20. Goo HW, Park SH (2018) Computed tomography-based ventricular volumes and morphometric parameters for deciding the treatment strategy in children with a hypoplastic left ventricle: preliminary results. Korean J Radiol 19:1042–1052

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goo HW (2019) Semiautomatic three-dimensional threshold-based cardiac computed tomography ventricular volumetry in repaired tetralogy of Fallot: comparison with cardiac magnetic resonance imaging. Korean J Radiol 20:102–113

    Article  PubMed  Google Scholar 

  22. Stout KK, Daniels CJ, Aboulhosn JA et al (2019) 2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation 139:e698–e800

    PubMed  Google Scholar 

  23. Goo HW (2019) Changes in right ventricular volume, volume load, and function measured with cardiac computed tomography over the entire time course of tetralogy of Fallot. Korean J Radiol 20:956–966

    Article  PubMed  PubMed Central  Google Scholar 

  24. Grothoff M, Hoffmann J, Lehmkuhl L et al (2011) Time course of right ventricular functional parameters after surgical correction of tetralogy of Fallot determined by cardiac magnetic resonance. Clin Res Cardiol 100:343–350

    Article  CAS  PubMed  Google Scholar 

  25. Śpiewak M, Małek ŁA, Petryka J et al (2013) Stable right ventricular size and function during short-term follow-up in patients with pulmonary regurgitation after tetralogy of Fallot repair. Clin Radiol 68:1206–1211

    Article  PubMed  Google Scholar 

  26. Buddhe S, Shah A, Lai WW (2015) Progression of right ventricular dilation in repaired tetralogy of Fallot. J Magn Reson Imaging 41:730–737

    Article  PubMed  Google Scholar 

  27. Rutz T, Ghandour F, Meierhofer C et al (2017) Evolution of right ventricular size over time after tetralogy of Fallot repair: a longitudinal cardiac magnetic resonance study. Eur Heart J Cardiovasc Imaging 18:364–370

    Article  PubMed  Google Scholar 

  28. Hoelscher M, Bonassin F, Oxenius A et al (2020) Right ventricular dilatation in patients with pulmonary regurgitation after repair of tetralogy of Fallot: how fast does it progress? Ann Pediatr Cardiol 13:294–300

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goo HW, Park SH (2023) Identification of rapid progression of right ventricular functional measures using three-dimensional cardiac computed tomography after total surgical correction of tetralogy of Fallot. Eur J Radiol 164:110856

    Article  PubMed  Google Scholar 

  30. Heng EL, Gatzoulis MA, Uebing A et al (2017) Immediate and midterm cardiac remodeling after surgical pulmonary valve replacement in adults with repaired tetralogy of Fallot: a prospective cardiovascular magnetic resonance and clinical study. Circulation 136:1703–1713

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee C, Choi ES, Lee CH (2020) Long-term outcomes of pulmonary valve replacement in patients with repaired tetralogy of Fallot. Eur J Cardiothorac Surg 58:246–252

    Article  PubMed  Google Scholar 

  32. Gursu HA, Varan B, Sade E et al (2016) Analysis of right ventricle function with strain imaging before and after pulmonary valve replacement. Cardiol J 23:195–201

    Article  PubMed  Google Scholar 

  33. Hallbergson A, Gauvreau K, Powell AJ, Geva T (2015) Right ventricular remodeling after pulmonary valve replacement: early gains, late losses. Ann Thorac Surg 99:660–666

    Article  PubMed  Google Scholar 

  34. Tuo G, Khambadkone S, Tann O et al (2013) Obstructive left heart disease in neonates with a “borderline” left ventricle: diagnostic challenges to choosing the best outcome. Pediatr Cardiol 34:1567–1576

    Article  PubMed  Google Scholar 

  35. Kaplinski M, Cohen MS (2015) Characterising adequacy or inadequacy of the borderline left ventricle: what tools can we use? Cardiol Young 25:1482–1488

    Article  PubMed  Google Scholar 

  36. van Son JA, Phoon CK, Silverman NH, Haas GS (1997) Predicting feasibility of biventricular repair of right-dominant unbalanced atrioventricular canal. Ann Thorac Surg 63:1657–1663

    Article  PubMed  Google Scholar 

  37. Grosse-Wortmann L, Yun TJ, Al-Radi O et al (2008) Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging. J Thorac Cardiovasc Surg 136:1429–1436

    Article  PubMed  Google Scholar 

  38. Goo HW (2017) Serial changes in anatomy and ventricular function on dual-source cardiac computed tomography after the Norwood procedure for hypoplastic left heart syndrome. Pediatr Radiol 47:1776–1786

    Article  PubMed  Google Scholar 

  39. Yoshimura N, Yamaguchi M (2009) Surgical strategy for pulmonary atresia with intact ventricular septum: initial management and definitive surgery. Gen Thorac Cardiovasc Surg 57:338–346

    Article  PubMed  Google Scholar 

  40. De Oliveira NC, Sittiwangkul R, McCrindle BW et al (2005) Biventricular repair in children with atrioventricular septal defects and a small right ventricle: anatomic and surgical considerations. J Thorac Cardiovasc Surg 130:250–257

    Article  PubMed  Google Scholar 

  41. Cinteză EE, Nicolescu AM, Iancu MA et al (2022) Isolated hypoplastic right ventricle - a challenge in medical practice. Rom J Morphol Embryol 63:49–53

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goo HW (2020) Quantification of initial right ventricular dimensions by computed tomography in infants with congenital heart disease and a hypoplastic right ventricle. Korean J Radiol 21:203–209

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carpentier A, Chauvaud S, Macé L et al (1988) A new reconstructive operation for Ebstein’s anomaly of the tricuspid valve. J Thorac Cardiovasc Surg 96:92–101

    Article  CAS  PubMed  Google Scholar 

  44. Celermajer DS, Bull C, Till JA et al (1994) Ebstein’s anomaly: presentation and outcome from fetus to adult. J Am Coll Cardiol 23:170–176

    Article  CAS  PubMed  Google Scholar 

  45. Hösch O, Sohns JM, Nguyen TT et al (2014) The total right/left-volume index: a new and simplifed cardiac magnetic resonance measure to evaluate the severity of Ebstein anomaly of the tricuspid valve: a comparison with heart failure markers from various modalities. Circ Cardiovasc Imaging 7:601–609

    Article  PubMed  Google Scholar 

  46. Rydman R, Shiina Y, Diller GP et al (2018) Major adverse events and atrial tachycardia in Ebstein’s anomaly predicted by cardiovascular magnetic resonance. Heart 104:37–44

    Article  PubMed  Google Scholar 

  47. Goo HW (2019) Volumetric severity assessment of Ebstein anomaly using three-dimensional cardiac CT: a feasibility study. Cardiovasc Imaging Asia 3:61–67

    Article  Google Scholar 

  48. Goo HW, Park SH (2024) Complimentary cardiac computed tomography ventricular volumetry-derived metrics of severity in patients with Ebstein anomaly: comparison with echocardiography-based severity indices. Pediatr Cardiol 45:24–31

    Article  PubMed  Google Scholar 

  49. Malayeri AA, Johnson WC, Macedo R et al (2008) Cardiac cine MRI: quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J Magn Reson Imaging 28:60–66

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gregor Z, Kiss AR, Szabó LE et al (2021) Sex- and age- specific normal values of left ventricular functional and myocardial mass parameters using threshold-based trabeculae quantification. PLoS ONE 16:e0258362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Freling HG, van Wijk K, Jaspers K et al (2013) Impact of right ventricular endocardial trabeculae on volumes and function assessed by CMR in patients with tetralogy of Fallot. Int J Cardiovasc Imaging 29:625–631

    Article  PubMed  Google Scholar 

  52. Goo HW, Park SH (2020) Pattern analysis of left ventricular remodeling using cardiac computed tomography in children with congenital heart disease: preliminary results. Korean J Radiol 21:717–725

    Article  PubMed  PubMed Central  Google Scholar 

  53. Goo HW (2021) Right ventricular mass quantification using cardiac CT and a semiautomatic three-dimensional hybrid segmentation approach: a pilot study. Korean J Radiol 22:901–911

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mergen V, Sartoretti T, Klotz E et al (2022) Extracellular volume quantification with cardiac late enhancement scanning using dual-source photon-counting detector CT. Invest Radiol 57:406–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aquino GJ, O’Doherty J, Schoepf UJ et al (2023) Myocardial characterization with extracellular volume mapping with a first-generation photon-counting detector CT with MRI reference. Radiology 307:e222030

    Article  PubMed  Google Scholar 

  56. Pontone G, Muscogiuri G, Andreini D et al (2016) The new frontier of cardiac computed tomography angiography: fractional flow reserve and stress myocardial perfusion. Curr Treat Options Cardiovasc Med 18:74

    Article  PubMed  Google Scholar 

  57. Adjedj J, Hyafil F, Halna du Fretay X et al (2021) Physiological evaluation of anomalous aortic origin of a coronary artery using computed tomography-derived fractional flow reserve. J Am Heart Assoc 10:e018593

    Article  PubMed  PubMed Central  Google Scholar 

  58. Goo HW (2021) Quantitative evaluation of coronary artery visibility on CT angiography in Kawasaki disease: young vs. old children. Int J Cardiovasc Imaging 37:1085–1092

    Article  PubMed  Google Scholar 

  59. Scannell CM, Hasaneen H, Greil G et al (2021) Automated quantitative stress perfusion cardiac magnetic resonance in pediatric patients. Front Pediatr 9:699497

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tumkosit M, Yingyong N, Mahayosnond A et al (2012) Accuracy of chest radiography for evaluating significantly abnormal pulmonary vascularity in children with congenital heart disease. Int J Cardiovasc Imaging 28(Suppl 1):69–75

    Article  PubMed  Google Scholar 

  61. Muster AJ, Paul MH, Van Grondelle A, Conway JJ (1976) Asymmetric distribution of the pulmonary blood flow between the right and left lungs in d-transposition of the great arteries. Am J Cardiol 38:352–361

    Article  CAS  PubMed  Google Scholar 

  62. Sridharan S, Derrick G, Deanfield J, Taylor AM (2006) Assessment of differential branch pulmonary blood flow: a comparative study of phase contrast magnetic resonance imaging and radionuclide lung perfusion imaging. Heart 92:963–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shin SM, Kim HK, Crotty EJ et al (2020) CT angiography findings of pulmonary arteriovenous malformations in children and young adults with hereditary hemorrhagic telangiectasia. AJR Am J Roentgenol 214:1369–1376

    Article  PubMed  Google Scholar 

  64. Goo HW (2010) Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children. Pediatr Radiol 40:1536–1544

    Article  PubMed  Google Scholar 

  65. Goo HW, Park SH (2017) Pulmonary vascular volume ratio measured by cardiac computed tomography in children and young adults with congenital heart disease: comparison with lung perfusion scintigraphy. Pediatr Radiol 47:1580–1587

    Article  PubMed  Google Scholar 

  66. Goo HW (2018) Computed tomography pulmonary vascular volume ratio in children and young adults with congenital heart disease: the effect of cardiac phase. Pediatr Radiol 48:915–922

    Article  PubMed  Google Scholar 

  67. Goo HW (2019) Computed tomography pulmonary vascular volume ratio can be used to evaluate the effectiveness of pulmonary angioplasty in peripheral pulmonary artery stenosis. Korean J Radiol 20:1422–1430

    Article  PubMed  PubMed Central  Google Scholar 

  68. Goo HW, Park SH (2020) Optimal attenuation threshold for quantifying CT pulmonary vascular volume ratio. Korean J Radiol 21:756–763

    Article  PubMed  PubMed Central  Google Scholar 

  69. Goo HW, Park SH (2022) Prediction of pulmonary hypertension using central-to-peripheral pulmonary vascular volume ratio on three-dimensional cardiothoracic CT in patients with congenital heart disease. Jpn J Radiol 40:961–969

    Article  CAS  PubMed  Google Scholar 

  70. Vida VL, Rito ML, Zucchetta F et al (2013) Pulmonary artery branch stenosis in patients with congenital heart disease. J Card Surg 28:439–445

    Article  PubMed  Google Scholar 

  71. Pruckmayer M, Zacherl S, Salzer-Muhar U et al (1999) Scintigraphic assessment of the pulmonary and whole-body blood flow patterns after surgical intervention in congenital heart disease. J Nucl Med 40:1477–1483

    CAS  PubMed  Google Scholar 

  72. Rengier F, Melzig C, Derlin T et al (2019) Advanced imaging in pulmonary hypertension: emerging techniques and applications. Int J Cardiovasc Imaging 35:1407–1420

    Article  PubMed  Google Scholar 

  73. Rengier F, Wörz S, Melzig C et al (2016) Automated 3D volumetry of the pulmonary arteries based on magnetic resonance angiography has potential for predicting pulmonary hypertension. PLoS ONE 11:e0162516

    Article  PubMed  PubMed Central  Google Scholar 

  74. Melzig C, Wörz S, Egenlauf B et al (2019) Combined automated 3D volumetry by pulmonary CT angiography and echocardiography for detection of pulmonary hypertension. Eur Radiol 29:6059–6068

    Article  PubMed  Google Scholar 

  75. Rahaghi FN, Ross JC, Agarwal M et al (2016) Pulmonary vascular morphology as an imaging bio marker in chronic thromboembolic pulmonary hypertension. Pulm Circ 6:70–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Alnasser TN, Abdulaal L, Maiter A et al (2024) Advancements in cardiac structures segmentation: a comprehensive systematic review of deep learning in CT imaging. Front Cardiovasc Med 11:1323461

    Article  PubMed  PubMed Central  Google Scholar 

  77. Goo HW, Park SH (2023) Partial voxel interpolation to reduce partial volume error of cardiac computed tomography ventricular volumetry in patients with congenital heart disease. Pediatr Radiol 53:2528–2538

    Article  PubMed  Google Scholar 

  78. Dini FL, Guarini G, Ballo P et al (2013) The left ventricle as a mechanical engine: from Leonardo da Vinci to the echocardiographic assessment of peak power output-to-left ventricular mass. J Cardiovasc Med (Hagerstown) 14:214–220

    Article  PubMed  Google Scholar 

  79. Xu S, Zhang Z, Zhou Q et al (2021) A pulmonary vascular extraction algorithm from chest CT/CTA images. J Healthc Eng 2021:5763177

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nam JG, Witanto JN, Park SJ et al (2021) Automatic pulmonary vessel segmentation on noncontrast chest CT: deep learning algorithm developed using spatiotemporally matched virtual noncontrast images and low-keV contrast-enhanced vessel maps. Eur Radiol 31:9012–9021

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pan L, Yan X, Zheng Y et al (2023) Automatic pulmonary artery-vein separation in CT images using a twin-pipe network and topology reconstruction. PeerJ Comput Sci 9:e1537

    Article  PubMed  PubMed Central  Google Scholar 

  82. Goo HW, Park SJ, Yoo SJ (2020) Advanced medical use of three-dimensional imaging in congenital heart disease: augmented reality, mixed reality, virtual reality, and three-dimensional printing. Korean J Radiol 21:133–145

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission:

(1) made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data;

(2) drafted the work or revised it critically for important intellectual content;

(3) approved the version to be published; and.

(4) agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Hyun Woo Goo.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goo, H.W. Pediatric three-dimensional quantitative cardiovascular computed tomography. Pediatr Radiol (2024). https://doi.org/10.1007/s00247-024-05931-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00247-024-05931-7

Keywords

Navigation