Skip to main content

Advertisement

Log in

A narrative review of radiomics and deep learning advances in neuroblastoma: updates and challenges

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Neuroblastoma is an extremely heterogeneous tumor that commonly occurs in children. The diagnosis and treatment of this tumor pose considerable challenges due to its varied clinical presentations and intricate genetic aberrations. Presently, various imaging modalities, including computed tomography, magnetic resonance imaging, and positron emission tomography, are utilized to assess neuroblastoma. Nevertheless, these conventional imaging modalities have limitations in providing quantitative information for accurate diagnosis and prognosis. Radiomics, an emerging technique, can extract intricate medical imaging information that is imperceptible to the human eye and transform it into quantitative data. In conjunction with deep learning algorithms, radiomics holds great promise in complementing existing imaging modalities. The aim of this review is to showcase the potential of radiomics and deep learning advancements to enhance the diagnostic capabilities of current imaging modalities for neuroblastoma.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Jiang M, Stanke J, Lahti JM (2011) The connections between neural crest development and neuroblastoma. Curr Top Dev Biol 94:77–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cao Y, Jin Y, Yu J et al (2017) Research progress of neuroblastoma related gene variations. Oncotarget 8:18444–18455

    Article  PubMed  Google Scholar 

  3. Tolbert VP, Matthay KK (2018) Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell Tissue Res 372:195–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith V, Foster J (2018) High-risk neuroblastoma treatment review. Child (Basel) 5:114

    Google Scholar 

  5. Liu Z, Wang S, Dong D et al (2019) The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics 9:1303–1322

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang X, Zhang Y, Zhang G et al (2022) Deep learning with radiomics for disease diagnosis and treatment: challenges and potential. Front Oncol 12:773840

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci 2:420

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chu CM, Rasalkar DD, Hu YJ et al (2011) Clinical presentations and imaging findings of neuroblastoma beyond abdominal mass and a review of imaging algorithm. Br J Radiol 84:81–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shimada H, Umehara S, Monobe Y et al (2001) International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children’s Cancer Group. Cancer 92:2451–2461

    Article  CAS  PubMed  Google Scholar 

  10. Shimada H, Ambros IM, Dehner LP et al (1999) Terminology and morphologic criteria of neuroblastic tumors: recommendations by the International Neuroblastoma Pathology Committee. Cancer 86:349–363

    Article  CAS  PubMed  Google Scholar 

  11. Shimada H, Ambros IM, Dehner LP et al (1999) The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 86:364–372

    Article  CAS  PubMed  Google Scholar 

  12. Campbell K, Gastier-Foster JM, Mann M et al (2017) Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the Children’s Oncology Group. Cancer 123:4224–4235

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Sjöblom T (2021) Targeting loss of heterozygosity: a novel paradigm for cancer therapy. Pharmaceuticals (Basel) 14:57

    Article  PubMed  Google Scholar 

  14. Ambros PF, Ambros IM, Brodeur GM et al (2009) International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer 100:1471–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomioka N, Oba S, Ohira M et al (2008) Novel risk stratification of patients with neuroblastoma by genomic signature, which is independent of molecular signature. Oncogene 27:441–449

    Article  CAS  PubMed  Google Scholar 

  16. Irwin MS, Naranjo A, Zhang FF et al (2021) Revised neuroblastoma risk classification system: a report from the Children’s Oncology Group. J Clin Oncol 39:3229–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burnand K, Barone G, McHugh K et al (2019) Preoperative computed tomography scanning for abdominal neuroblastomas is superior to magnetic resonance imaging for safe surgical planning. Pediatr Blood Cancer 66:e27955

    Article  PubMed  Google Scholar 

  18. Callahan MJ, MacDougall RD, Bixby SD et al (2018) Ionizing radiation from computed tomography versus anesthesia for magnetic resonance imaging in infants and children: patient safety considerations. Pediatr Radiol 48:21–30

    Article  PubMed  Google Scholar 

  19. Chen AM, Trout AT, Towbin AJ (2018) A review of neuroblastoma image-defined risk factors on magnetic resonance imaging. Pediatr Radiol 48:1337–1347

    Article  PubMed  Google Scholar 

  20. Sirignano M, Dillman JR, Weiss BD et al (2018) Change in liver, spleen and bone marrow magnetic resonance imaging signal intensity over time in children with solid abdominal tumors. Pediatr Radiol 48:325–332

    Article  PubMed  Google Scholar 

  21. Man S, Yan J, Li J et al (2021) Value of pretreatment 18F-FDG PET/CT in prognosis and the reflection of tumor burden: a study in pediatric patients with newly diagnosed neuroblastoma. Int J Med Sci 18:1857–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. El-Maghraby T (2007) 131I-MIBG in the diagnosis of primary and metastatic neuroblastoma. Gulf J Oncolog:33–41

  23. Seo ES, Shin M, Lim H et al (2022) Clinical implication of residual MIBG-positive disease in the follow-up of high-risk neuroblastoma treated with tandem high-dose chemotherapy and autologous stem cell transplantation. Pediatr Blood Cancer 69:e29502

    Article  CAS  PubMed  Google Scholar 

  24. Soffer S, Ben-Cohen A, Shimon O et al (2019) Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology 290:590–606

    Article  PubMed  Google Scholar 

  25. Chen X, Wang H, Huang K et al (2021) CT-based radiomics signature with machine learning predicts MYCN amplification in pediatric abdominal neuroblastoma. Front Oncol 11:687884

    Article  PubMed  PubMed Central  Google Scholar 

  26. Di Giannatale A, Di Paolo PL, Curione D et al (2021) Radiogenomics prediction for MYCN amplification in neuroblastoma: a hypothesis generating study. Pediatr Blood Cancer 68:e29110

    Article  PubMed  Google Scholar 

  27. Wang H, Chen X, Liu H et al (2021) Computed tomography-based radiomics for differential of retroperitoneal neuroblastoma and ganglioneuroblastoma in children. Nan Fang Yi Ke Da Xue Xue Bao 41:1569–1576

    CAS  PubMed  Google Scholar 

  28. Wu H, Wu C, Zheng H et al (2021) Radiogenomics of neuroblastoma in pediatric patients: CT-based radiomics signature in predicting MYCN amplification. Eur Radiol 31:3080–3089

    Article  PubMed  Google Scholar 

  29. Feng L, Qian L, Yang S et al (2022) Prediction for mitosis-karyorrhexis index status of pediatric neuroblastoma via machine learning based 18F-FDG PET/CT radiomics. Diagnostics (Basel) 12:262

    Article  CAS  PubMed  Google Scholar 

  30. Feng L, Lu X, Yang X et al (2022) An 18F-FDG PET/CT radiomics nomogram for differentiation of high-risk and non-high-risk patients of the International Neuroblastoma Risk Group Staging System. Eur J Radiol 154:110444

    Article  PubMed  Google Scholar 

  31. Feng L, Yang X, Lu X et al (2022) 18F-FDG PET/CT-based radiomics nomogram could predict bone marrow involvement in pediatric neuroblastoma. Insights Imaging 13:144

    Article  PubMed  PubMed Central  Google Scholar 

  32. Feng L, Qian L, Yang S et al (2022) Clinical parameters combined with radiomics features of PET/CT can predict recurrence in patients with high-risk pediatric neuroblastoma. BMC Med Imaging 22:102

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fiz F, Bottoni G, Bini F et al (2022) Prognostic value of texture analysis of the primary tumour in high-risk neuroblastoma: an 18F-DOPA PET study. Pediatr Blood Cancer 69:e29910

    Article  PubMed  Google Scholar 

  34. Liu G, Poon M, Zapala MA et al (2022) Incorporating radiomics into machine learning models to predict outcomes of neuroblastoma. J Digit Imaging 35:605–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qian L, Yang S, Zhang S et al (2022) Prediction of MYCN amplification, 1p and 11q aberrations in pediatric neuroblastoma via pre-therapy 18F-FDG PET/CT radiomics. Front Med (Lausanne) 9:840777

    Article  PubMed  Google Scholar 

  36. Tan E, Merchant K, Kn BP et al (2022) CT-based morphologic and radiomics features for the classification of MYCN gene amplification status in pediatric neuroblastoma. Childs Nerv Syst 38:1487–1495

    Article  PubMed  Google Scholar 

  37. Ghosh A, Yekeler E, Teixeira SR et al (2023) Role of MRI radiomics for the prediction of MYCN amplification in neuroblastomas. Eur Radiol 33:6726–6735

    Article  CAS  PubMed  Google Scholar 

  38. Feng L, Yang X, Lu X et al (2023) Diagnostic value of 18F-FDG PET/CT-based radiomics nomogram in bone marrow involvement of pediatric neuroblastoma. Acad Radiol 30:940–951

    Article  PubMed  Google Scholar 

  39. Feng L, Zhang S, Wang C et al (2023) Axial skeleton radiomics of 18F-FDG PET/CT: impact on event-free survival prediction in high-risk pediatric neuroblastoma. Acad Radiol. Epub ahead of print

    Google Scholar 

  40. Feng L, Zhang S, Lu X et al (2023) An optimal radiomics nomogram based on 18F-FDG PET/CT for identifying event-free survival in pediatric neuroblastoma. Acad Radiol 30:2309–2320

    Article  PubMed  Google Scholar 

  41. Qian LD, Feng LJ, Zhang SX et al (2023) 18F-FDG PET/CT imaging of pediatric peripheral neuroblastic tumor: a combined model to predict the International Neuroblastoma Pathology classification. Quant Imaging Med Surg 13:94–107

    Article  PubMed  Google Scholar 

  42. Wang H, Xie M, Chen X et al (2023) Development and validation of a CT-based radiomics signature for identifying high-risk neuroblastomas under the revised Children’s Oncology Group classification system. Pediatr Blood Cancer 70:e30280

    Article  CAS  PubMed  Google Scholar 

  43. Wang H, Chen X, Yu W et al (2023) Whole-tumor radiomics analysis of T2-weighted imaging in differentiating neuroblastoma from ganglioneuroblastoma/ganglioneuroma in children: an exploratory study. Abdom Radiol (NY) 48:1372–1382

    Article  PubMed  Google Scholar 

  44. Wang H, Xie M, Chen X et al (2023) Radiomics analysis of contrast-enhanced computed tomography in predicting the International Neuroblastoma Pathology classification in neuroblastoma. Insights Imaging 14:106

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang H, Li T, Xie M et al (2023) Association of computed tomography radiomics signature with progression-free survival in neuroblastoma patients. Clin Oncol (R Coll Radiol) 35:e639–e647

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Qin J, Chen X et al (2023) Contrast-enhanced computed tomography radiomics in predicting primary site response to neoadjuvant chemotherapy in high-risk neuroblastoma. Abdom Radiol (NY) 48:976–986

    PubMed  Google Scholar 

  47. Zhang Y, Yang Y, Ning G et al (2023) Contrast computed tomography-based radiomics is correlation with COG risk stratification of neuroblastoma. Abdom Radiol (NY) 48:2111–2121

    Article  PubMed  Google Scholar 

  48. Zhao L, Shi L, Huang SG et al (2023) Identification and validation of radiomic features from computed tomography for preoperative classification of neuroblastic tumors in children. BMC Pediatr 23:262

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ghosh A, Yekeler E, Dalal D et al (2022) Whole-tumour apparent diffusion coefficient (ADC) histogram analysis to identify MYCN-amplification in neuroblastomas: preliminary results. Eur Radiol 32:8453–8462

    Article  CAS  PubMed  Google Scholar 

  50. Li C, Zhang J, Chen S et al (2018) Prognostic value of metabolic indices and bone marrow uptake pattern on preoperative 18F-FDG PET/CT in pediatric patients with neuroblastoma. Eur J Nucl Med Mol Imaging 45:306–315

    Article  PubMed  Google Scholar 

  51. Schmelz K, Toedling J, Huska M et al (2021) Spatial and temporal intratumour heterogeneity has potential consequences for single biopsy-based neuroblastoma treatment decisions. Nat Commun 12:6804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoo SY, Kim JS, Sung KW et al (2013) The degree of tumor volume reduction during the early phase of induction chemotherapy is an independent prognostic factor in patients with high-risk neuroblastoma. Cancer 119:656–664

    Article  PubMed  Google Scholar 

  53. Matthay KK, Maris JM, Schleiermacher G et al (2016) Neuroblastoma. Nat Rev Dis Primers 2:16078

    Article  PubMed  Google Scholar 

  54. Li C, Wang S, Li C et al (2022) Improved risk stratification by PET-based intratumor heterogeneity in children with high-risk neuroblastoma. Front Oncol 12:896593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Florkow MC, Guerreiro F, Zijlstra F et al (2020) Deep learning-enabled MRI-only photon and proton therapy treatment planning for paediatric abdominal tumours. Radiother Oncol 153:220–227

    Article  CAS  PubMed  Google Scholar 

  56. Guerreiro F, Seravalli E, Janssens GO et al (2021) Deep learning prediction of proton and photon dose distributions for paediatric abdominal tumours. Radiother Oncol 156:36–42

    Article  CAS  PubMed  Google Scholar 

  57. Mayampurath A, Ramesh S, Michael D et al (2021) Predicting response to chemotherapy in patients with newly diagnosed high-risk neuroblastoma: a report from the International Neuroblastoma Risk Group. JCO Clin Cancer Inform 5:1181–1188

    Article  PubMed  Google Scholar 

  58. Veiga-Canuto D, Cerdà-Alberich L, Sangüesa Nebot C et al (2022) Comparative multicentric evaluation of inter-observer variability in manual and automatic segmentation of neuroblastic tumors in magnetic resonance images. Cancers (Basel) 14:3648

    Article  PubMed  Google Scholar 

  59. Veiga-Canuto D, Cerdà-Alberich L, Jiménez-Pastor A et al (2023) Independent validation of a deep learning Nnu-Net Tool for neuroblastoma detection and segmentation in MR images. Cancers (Basel) 15:1622

    Article  PubMed  Google Scholar 

  60. Yeow LY, Teh YX, Lu X et al (2023) Prediction of MYCN gene amplification in pediatric neuroblastomas: development of a deep learning-based tool for automatic tumor segmentation and comparative analysis of computed tomography-based radiomics features harmonization. J Comput Assist Tomogr 47:786–795

    Article  PubMed  Google Scholar 

  61. Szmul A, Taylor S, Lim P et al (2023) Deep learning based synthetic CT from cone beam CT generation for abdominal paediatric radiotherapy. Phys Med Biol 68:105006

    Article  PubMed Central  Google Scholar 

  62. Hu F, Chen AA, Horng H et al (2023) Image harmonization: a review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization. NeuroImage 274:120125

    Article  PubMed  Google Scholar 

  63. Tomaszewski MR, Gillies RJ (2021) The biological meaning of radiomic features. Radiology 298:505–516

    Article  PubMed  Google Scholar 

  64. Wang C, Lue W, Kaalia R et al (2022) Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma. Sci Rep 12:15425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of Chongqing ((CSTB)2023NSCQ-BHX0127).

Author information

Authors and Affiliations

Authors

Contributions

X.C. and L.H. conceived, supervised, and supported the study. H.W. performed the literature search and drafted the initial manuscript. X.C. and L.H. reviewed and edited the draft of the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Ling He.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflicts of interest

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, X. & He, L. A narrative review of radiomics and deep learning advances in neuroblastoma: updates and challenges. Pediatr Radiol 53, 2742–2755 (2023). https://doi.org/10.1007/s00247-023-05792-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-023-05792-6

Keywords

Navigation