Skip to main content

Advertisement

Log in

Incorporating Radiomics into Machine Learning Models to Predict Outcomes of Neuroblastoma

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Neuroblastoma is one of the most common pediatric cancers. This study used machine learning (ML) to predict the mortality and a few other investigated intermediate outcomes of neuroblastoma patients non-invasively from CT images. Performances of multiple ML algorithms over retrospective CT images of 65 neuroblastoma patients are analyzed. An artificial neural network (ANN) is used on tumor radiomic features extracted from 3D CT images. A pre-trained 2D convolutional neural network (CNN) is used on slices of the same images. ML models are trained for various pathologically investigated outcomes of these patients. A subspecialty-trained pediatric radiologist independently reviewed the manually segmented primary tumors. Pyradiomics library is used to extract 105 radiomic features. Six ML algorithms are compared to predict the following outcomes: mortality, presence or absence of metastases, neuroblastoma differentiation, mitosis-karyorrhexis index (MKI), presence or absence of MYCN gene amplification, and presence of image-defined risk factors (IDRF). The prediction ranges over multiple experiments are measured using the area under the receiver operating characteristic (ROC-AUC) for comparison. Our results show that the radiomics-based ANN method slightly outperforms the other algorithms in predicting all outcomes except classification of the grade of neuroblastic differentiation, for which the elastic regression model performed the best. Contributions of the article are twofold: (1) noninvasive models for the prognosis from CT images of neuroblastoma, and (2) comparison of relevant ML models on this medical imaging problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Maris, John M., and Katherine K. Matthay. “Molecular biology of neuroblastoma.” Journal of Clinical Oncology 17(7): 2264-2264, (1999).

    Article  CAS  Google Scholar 

  2. Maris, J. M., M. D. Hogarty, and R. Bagatell. “Neuroblastoma.” Lancet 369, 2106–2120, (2007).

    Article  CAS  Google Scholar 

  3. Caron, H. N. “Are thoracic neuroblastomas really different?” Pediatric Blood & Cancer 7(54): 867-867, (2010).

    Article  Google Scholar 

  4. Goodman MT, Gurney JG, Smith MA, Olshan AF. “Sympathetic nervous system tumors. Cancer Incidence and Survival among Children and Adolescents.” United States SEER Program, 65–72 (1995).

  5. Jereb B, Bretsky SS, Vogel R, Helson L. “Age and prognosis in neuroblastoma. Review of 112 patients younger than 2 years.” The American Journal of Pediatric Hematology/Oncology 6(3): 233-43, (1984).

    Article  CAS  Google Scholar 

  6. Kulkarni AV, Bilbao JM, Cusimano MD, Muller PJ.. “Malignant transformation of ganglioneuroma into spinal neuroblastoma in an adult: case report.” Journal of Neurosurgery 88(2): 324-7, (1998).

    Article  CAS  Google Scholar 

  7. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ.. “Radiomics: extracting more information from medical images using advanced feature analysis.” European Journal of Cancer 48(4): 441-6, (2012).

    Article  Google Scholar 

  8. Teshiba R, Kawano S, Wang LL, He L, Naranjo A, London WB, Seeger RC, Gastier-Foster JM, Look AT, Hogarty MD, Cohn SL. “Age-dependent prognostic effect by Mitosis-Karyorrhexis Index in neuroblastoma: a report from the Children’s Oncology Group.” Pediatric and Developmental Pathology 17(6): 441-9, (2014).

    Article  Google Scholar 

  9. Jackson A, O’Connor JP, Parker GJ, Jayson GC. “Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging.” Clinical Cancer Research 13(12): 3449-59, (2007).

    Article  Google Scholar 

  10. Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, Aldape K, Cha S, Kuo MD. “Identification of noninvasive imaging surrogates for brain tumor gene-expression modules.” Proceedings of the National Academy of Sciences 105(13): 5213-8, (2008).

    Article  CAS  Google Scholar 

  11. Huang SY, Franc BL, Harnish RJ, Liu G, Mitra D, Copeland TP, Arasu VA, Kornak J, Jones EF, Behr SC, Hylton NM. “Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis.” NPJ Breast Cancer 4(1): 24, (2018).

    Article  Google Scholar 

  12. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T. “Decaf: a deep convolutional activation feature for generic visual recognition.” International Conference on Machine Learning 647–655, (2014).

  13. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM. “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning.” IEEE Transactions on Medical Imaging 35(5): 1285-98, (2016).

    Article  Google Scholar 

  14. Cawley GC, Talbot NL. “On over-fitting in model selection and subsequent selection bias in performance evaluation.” Journal of Machine Learning Research 2079–107, (2010).

  15. Atikankul T, Atikankul Y, Santisukwongchote S, Marrano P, Shuangshoti S, Thorner PS.: MIB-1 index as a surrogate for mitosis-karyorrhexis index in neuroblastoma. The American Journal of Surgical Pathology 39(8):1054-60, (2015).

    Article  Google Scholar 

  16. Gestblom C, Hoehner JC, Påhlman S. "Proliferation and apoptosis in neuroblastoma: subdividing the mitosis-karyorrhexis index." European Journal of Cancer 31(4): 458-463, (1995). https://doi.org/10.1016/0959-8049(95)00006-5

    Article  Google Scholar 

  17. Yoshimoto M, Caminada De Toledo SR, Monteiro Caran EM, et al. “MYCN gene amplification. Identification of cell populations containing double minutes and homogeneously staining regions in neuroblastoma tumors.” Am J Pathol. 155(5):1439‐1443, (1999). https://doi.org/10.1016/S0002-9440(10)65457-0

  18. Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RG, Fillion-Robin JC, Pieper S, Aerts HJ. “Computational radiomics system to decode the radiographic phenotype.” Cancer Research 77(21): 104-7, (2017).

    Article  Google Scholar 

  19. Zwanenburg A, Leger S, Vallières M, Löck S, et al.: Image biomarker standardisation initiative. Radiology 295:328-338, 2020. https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

  20. Simonyan K, Zisserman A. “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:1409.1556. 2014 Sep 4.

  21. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. “SMOTE: synthetic minority over-sampling technique.” Journal of Artificial Intelligence Research 16: 321-57, (2002).

    Article  Google Scholar 

  22. Lancashire LJ, Lemetre C, Ball GR. “An introduction to artificial neural networks in bioinformatics—application to complex microarray and mass spectrometry datasets in cancer studies.” Briefings in Bioinformatics 10(3): 315-29, (2009).

    Article  CAS  Google Scholar 

  23. Coroller TP, Grossmann P, Hou Y, Velazquez ER, Leijenaar RT, Hermann G, Lambin P, Haibe-Kains B, Mak RH, Aerts HJ. “CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma.” Radiotherapy and Oncology 114(3): 345-50, (2015).

    Article  Google Scholar 

  24. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, Ma ZL, Liu ZY. “Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer.” Jnl. of Clinical Oncology 34(18), (2016).

  25. Chen AM, Trout AT, Towbin AJ. “A review of neuroblastoma image-defined risk factors on magnetic resonance imaging.” Pediatric Radiology 48(9): 1337-47, (2018).

    Article  Google Scholar 

  26. Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, Giammarile F, Schmidt M, Shulkin BL, Matthay KK, Lewington VJ. “Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group Project.” Radiology 261(1): 243-57, (2011).

    Article  Google Scholar 

  27. Gillies RJ, Kinahan PE, Hricak H. “Radiomics: images are more than pictures, they are data.” Radiology 278(2): 563-77, (2015).

    Article  Google Scholar 

  28. Brisse HJ, et al. “Radiogenomics of neuroblastomas: relationships between imaging phenotypes, tumor genomic profile and survival.” PLOS One (2017). https://doi.org/10.1371/journal.pone.0185190

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu, G., Mitra, D., Jones, E.F. et al. Mask-guided convolutional neural network for breast tumor prognostic outcome prediction on 3D DCE-MR images. J Digit Imaging (2021). https://doi.org/10.1007/s10278-021-00449-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Cancer Institute Grant R01CA154561 and the National Institute of Biomedical Imaging & Bioengineering Grant R15EB030807. Anonymous reviewers’ comments have significantly improved the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debasis Mitra or Youngho Seo.

Ethics declarations

Ethics Approval

This study was a retrospective study of medical records and medical images and qualified as exempt by the appropriate Institutional Review Board (IRB) at the Florida Institute of Technology.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Poon, M., Zapala, M.A. et al. Incorporating Radiomics into Machine Learning Models to Predict Outcomes of Neuroblastoma. J Digit Imaging 35, 605–612 (2022). https://doi.org/10.1007/s10278-022-00607-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-022-00607-w

Keywords

Navigation