Skip to main content

Advertisement

Log in

Computed tomography evaluation of pediatric pulmonary hypertension

  • Thoracic imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Although rare in the pediatric population, pulmonary hypertension is a significant cause of morbidity and mortality in affected individuals. In addition to evaluating potential causes and severity of parenchymal lung diseases, non-contrast high-resolution CT of the chest can aid in the diagnosis of heritable and acquired causes. In addition to evaluating parenchymal lung disease, CT angiography can help to confirm findings of pulmonary hypertension using criteria similar to echocardiography, and provide detailed assessment of the pulmonary vascularity in specific causes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Galiè N, Humbert M, Vachiery JL et al (2015) ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Eur Heart J 37:67–119

    Article  Google Scholar 

  2. Barst RJ, McGoon MD, Elliott CG et al (2012) Survival in childhood pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-term Pulmonary Arterial Hypertension Disease Management. Circulation 125:113–122

    Article  Google Scholar 

  3. Hansmann G, Apitz C (2016) Treatment of children with pulmonary hypertension. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK. Heart 102:ii67–ii85

    Article  CAS  Google Scholar 

  4. Augustine DX, Coates-Bradshaw LD, Willis J et al (2018) Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the British Society of Echocardiography. Echo Res Pract 5:G11–G24

    Article  Google Scholar 

  5. Pettersen MD, Du W, Skeens ME, Humes RA (2008) Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J Am Soc Echocardiogr 21:922–934

    Article  Google Scholar 

  6. Newman B, Alkhori N (2020) Congenital central pulmonary artery anomalies: part 2. Pediatr Radiol 50:1030–1040

    Article  Google Scholar 

  7. Ochiai M, Hikino S, Yabuuchi H et al (2007) A new scoring system for computed tomography of the chest for assessing the clinical status of bronchopulmonary dysplasia. J Pediatr 152:90–95

    Article  Google Scholar 

  8. Kurland G, Deterding RR, Hagood JS et al (2013) An official American Thoracic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy. Am J Respir Crit Care Med 188:376–394

    Article  Google Scholar 

  9. Semple TR, Ashworth MT, Owens CM (2017) Interstitial lung disease in children made easier … well, almost. Radiographics 37:1679–1703

    Article  Google Scholar 

  10. Berger RMF, Beghetti M, Humpl T et al (2012) Clinical features of paediatric pulmonary hypertension: a registry study. Lancet 379:537–546

    Article  Google Scholar 

  11. Deng Z, Morse JH, Slager SL et al (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor–II gene. Am J Hum Genet 67:737–744

    Article  CAS  Google Scholar 

  12. Morrell NW (2006) Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc 3:680–686

    Article  CAS  Google Scholar 

  13. Croix CMS, Steinhorn RH (2016) New thoughts about the origin of plexiform lesions. Am J Respir Crit Care Med 193:484–485

    Article  CAS  Google Scholar 

  14. Girerd B, Montani D, Coulet F et al (2010) Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. Am J Respir Crit Care Med 181:851–861

    Article  CAS  Google Scholar 

  15. Galambos C, Mullen MP, Shieh JT et al (2019) Phenotype characterisation of TBX4 mutation and deletion carriers with neonatal and paediatric pulmonary hypertension. Eur Respir J 54:1801965

    Article  CAS  Google Scholar 

  16. Kerstjens-Frederikse WS, Bongers EMHF, Roofthooft MTR et al (2013) TBX4 mutations (small patella syndrome) are associated with childhood-onset pulmonary arterial hypertension. J Med Genet 50:500–506

    Article  CAS  Google Scholar 

  17. Bongers EM, Duijf PH, van Beersum SE et al (2004) Mutations in the human TBX4 gene cause small patella syndrome. Am J Hum Genet 74:1239–1248

    Article  CAS  Google Scholar 

  18. Montani D, Girerd B, Jais X et al (2017) Clinical phenotypes and outcomes of heritable and sporadic pulmonary veno-occlusive disease: a population-based study. Lancet Respir Med 5:125–134

    Article  CAS  Google Scholar 

  19. Palmer SM, Robinson LJ, Wang A et al (1998) Massive pulmonary edema and death after prostacyclin infusion in a patient with pulmonary veno-occlusive disease. Chest 113:237–240

    Article  CAS  Google Scholar 

  20. Woerner C, Cutz E, Yoo S-J et al (2014) Pulmonary venoocclusive disease in childhood. Chest 146:167–174

    Article  Google Scholar 

  21. Montani D, Lau EM, Dorfmuller P et al (2016) Pulmonary veno-occlusive disease. Eur Respir J 47:1518–1534

    Article  Google Scholar 

  22. Steel PM, Fuster V, Cohen M et al (1987) Isolated atrial septal defect with pulmonary vascular obstructive disease — long-term follow-up and prediction of outcome after surgical correction. Circulation 76:1037–1042

    Article  Google Scholar 

  23. Engelfriet PM, Duffels MG, Moller T et al (2007) Pulmonary arterial hypertension in adults born with a heart septal defect: the Euro Heart Survey on adult congenital heart disease. Heart 93:682–687

    Article  Google Scholar 

  24. Opotowsky AR (2015) Clinical evaluation and management of pulmonary hypertension in the adult with congenital heart disease. Circulation 131:200–210

    Article  Google Scholar 

  25. Zijlstra WM, Elmasry O, Pepplinkhuizen S et al (2017) Pulmonary arterial hypertension in children after neonatal arterial switch operation. Heart 103:1244–1249

    Article  Google Scholar 

  26. Victoria T, Mong A, Altes T et al (2009) Evaluation of pulmonary embolism in a pediatric population with high clinical suspicion. Pediatr Radiol 39:35–41

    Article  Google Scholar 

  27. Spencer R, Valencia Villeda G, Takeda K, Rosenzweig EB (2020) Chronic thromboembolic pulmonary hypertension in a child with sickle cell disease. Front Pediatr 8:363

    Article  Google Scholar 

  28. Krowka MJ (2011) Management of pulmonary complications in pretransplant patients. Clin Liver Dis 15:765–777

    Article  Google Scholar 

  29. Aldenkortt F, Aldenkortt M, Caviezel L et al (2014) Portopulmonary hypertension and hepatopulmonary syndrome. World J Gastroenterol 20:8072–8081

    Article  Google Scholar 

  30. Condino AA, Ivy DD, O’Connor JA et al (2005) Portopulmonary hypertension in pediatric patients. J Pediatr 147:20–26

    Article  Google Scholar 

  31. Machicao VI, Fallon MB (2012) Hepatopulmonary syndrome. Semin Respir Crit Care Med 33:11–16

    Article  Google Scholar 

  32. Newman B, Feinstein JA, Cohen RA et al (2010) Congenital extrahepatic portosystemic shunt associated with heterotaxy and polysplenia. Pediatr Radiol 40:1222–1230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Andrew Mong.

Ethics declarations

Conflicts of interest

Jason P. Weinman is on the advisory board and receives non-financial support in the study of fibrosing lung disease from Boehringer Ingelheim Inc., and is a reviewer for fibrosing lung disease for Parexel/Calyx. The other authors have nothing to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mong, D.A., Guillerman, R.P. & Weinman, J.P. Computed tomography evaluation of pediatric pulmonary hypertension. Pediatr Radiol 52, 1888–1894 (2022). https://doi.org/10.1007/s00247-022-05385-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-022-05385-9

Keywords

Navigation