Skip to main content

Advertisement

Log in

Bronchopulmonary dysplasia from chest radiographs to magnetic resonance imaging and computed tomography: adding value

  • Neonatal imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

A Correction to this article was published on 07 September 2022

This article has been updated

Abstract

Bronchopulmonary dysplasia (BPD) is a common long-term complication of preterm birth. The chest radiograph appearance and survivability have evolved since the first description of BPD in 1967 because of improved ventilation and clinical strategies and the introduction of surfactant in the early 1990s. Contemporary imaging care is evolving with the recognition that comorbidities of tracheobronchomalacia and pulmonary hypertension have a great influence on outcomes and can be noninvasively evaluated with CT and MRI techniques, which provide a detailed evaluation of the lungs, trachea and to a lesser degree the heart. However, echocardiography remains the primary modality to evaluate and screen for pulmonary hypertension. This review is intended to highlight the important findings that chest radiograph, CT and MRI can contribute to precision diagnosis, phenotyping and prognosis resulting in optimal management and therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

References

  1. World Health Organization (2018) Preterm birth: key facts. http://www.who.int/news-room/fact-sheets/detail/preterm-birth. Accessed 28 Feb 2021

  2. Centers for Disease Control and Prevention (2020) Reproductive health: premature birth. http://www.cdc.gov/reproductivehealth/features/premature-birth. Accessed 28 Feb 2021

  3. Higgins RD, Jobe AH, Koso-Thomas M et al (2018) Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr 197:300–308

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bonadies L, Zaramella P, Porzionato A et al (2020) Present and future of bronchopulmonary dysplasia. J Clin Med 9:1539

    Article  PubMed Central  Google Scholar 

  5. Sung T, Hwang SM, Kim MY et al (2018) Relationship between clinical severity of “new” bronchopulmonary dysplasia and HRCT abnormalities in VLBW infants. Pediatr Pulmonol 53:1391–1398

    Article  PubMed  Google Scholar 

  6. Shepherd EG, Luca D (2020) New imaging tools allow bronchopulmonary dysplasia to enter the age of precision medicine. Am J Respir Crit Care Med 202:924–926

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wildman-Tobriner B, Strauss KJ, Bhargavan-Chatfield M et al (2018) Using the American College of Radiology dose index registry to evaluate practice patterns and radiation dose estimates of pediatric body CT. AJR Am J Roentgenol 210:641–647

    Article  PubMed  Google Scholar 

  8. Higano NS, Spielberg DR, Fleck RJ et al (2018) Neonatal pulmonary magnetic resonance imaging of bronchopulmonary dysplasia predicts short-term clinical outcomes. Am J Respir Crit Care Med 198:1302–1311

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hahn AD, Higano NS, Walkup LL et al (2016) Pulmonary MRI of neonates in the intensive care unit using 3D ultrashort echo time and a small footprint MRI system. J Magn Reson Imaging 45:463–471

    Article  PubMed  PubMed Central  Google Scholar 

  10. Northway WH, Rosan RC, Porter DY (1967) Pulmonary disease following respiratory therapy of hyaline-membrane disease — bronchopulmonary dysplasia. New Engl J Med 276:357–368

    Article  PubMed  Google Scholar 

  11. Day CL, Ryan RM (2017) Bronchopulmonary dysplasia: new becomes old again! Pediatr Res 81:210–213

    Article  PubMed  Google Scholar 

  12. Shennan A, Dunn M, Ohlsson A et al (1988) Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics 82:527–532

    Article  CAS  PubMed  Google Scholar 

  13. Jobe AH, Bancalari E (2012) Bronchopulmonary dysplasia. Am J Resp Crit Care Med 163:1723–1729

    Article  Google Scholar 

  14. Walsh MC, Wilson-Costello D, Zadell A et al (2003) Safety, reliability, and validity of a physiologic definition of bronchopulmonary dysplasia. J Perinatol 23:451–456

    Article  PubMed  Google Scholar 

  15. Isayama T, Lee SK, Yang J et al (2017) Revisiting the definition of bronchopulmonary dysplasia: effect of changing panoply of respiratory support for preterm neonates. JAMA Pediatr 171:271–279

    Article  PubMed  Google Scholar 

  16. Poindexter BB, Feng R, Schmidt B et al (2015) Comparisons and limitations of current definitions of bronchopulmonary dysplasia for the prematurity and respiratory outcomes program. Ann Am Thorac Soc 12:1822–1830

    Article  PubMed  PubMed Central  Google Scholar 

  17. Thunqvist P, Gustafsson P, Norman M et al (2015) Lung function at 6 and 18 months after preterm birth in relation to severity of bronchopulmonary dysplasia. Pediatr Pulmonol 50:978–986

    Article  PubMed  Google Scholar 

  18. Sanchez-Solis M, Garcia-Marcos L, Bosch-Gimenez V et al (2012) Lung function among infants born preterm, with or without bronchopulmonary dysplasia. Pediatr Pulmonol 47:674–681

    Article  PubMed  Google Scholar 

  19. Morrow LA, Wagner BD, Ingram DA et al (2017) Antenatal determinants of bronchopulmonary dysplasia and late respiratory disease in preterm infants. Am J Respir Crit Care Med 196:364–374

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bancalari E, Abdenour GE, Feller R, Gannon J (1979) Bronchopulmonary dysplasia: clinical presentation. J Pediatr 95:819–823

    Article  CAS  PubMed  Google Scholar 

  21. Toce SS, Farrell PM, Leavitt LA et al (1984) Clinical and roentgenographic scoring systems for assessing bronchopulmonary dysplasia. Am J Dis Child 138:581–585

    CAS  PubMed  Google Scholar 

  22. Polin RA, Carlo WA, Committee on Fetus and Newborn, American Academy of Pediatrics (2014) Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics 133:156–163

    Article  PubMed  Google Scholar 

  23. Halliday HL (2017) The fascinating story of surfactant. J Paediatr Child Health 53:327–332

    Article  PubMed  Google Scholar 

  24. Swischuk LE, Shetty BP, John SD (1996) The lungs in immature infants: how important is surfactant therapy in preventing chronic lung problems? Pediatr Radiol 26:508–511

    Article  CAS  PubMed  Google Scholar 

  25. Breysem L, Smet M-H, Lierde SV et al (1997) Bronchopulmonary dysplasia: correlation of radiographic and clinical findings. Pediatr Radiol 27:642–646

    Article  CAS  PubMed  Google Scholar 

  26. May C, Prendergast M, Salman S et al (2009) Chest radiograph thoracic areas and lung volumes in infants developing bronchopulmonary dysplasia. Pediatr Pulmonol 44:80–85

    Article  PubMed  Google Scholar 

  27. Dassios T, Curley A, Krokidis M et al (2016) Correlation of radiographic thoracic area and oxygenation impairment in bronchopulmonary dysplasia. Respir Physiol Neurobiol 220:40–45

    Article  PubMed  Google Scholar 

  28. Moya MP, Bisset GS 3rd, Auten RL Jr et al (2001) Reliability of CXR for the diagnosis of bronchopulmonary dysplasia. Pediatr Radiol 31:339–342

    Article  CAS  PubMed  Google Scholar 

  29. Kim H, Kim JY, Yun BL et al (2017) Interstitial pneumonia pattern on day 7 chest radiograph predicts bronchopulmonary dysplasia in preterm infants. BMC Pediatr 17:125

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hyödynmaa E, Korhonen P, Ahonen S et al (2012) Frequency and clinical correlates of radiographic patterns of bronchopulmonary dysplasia in very low birth weight infants by term age. Eur J Pediatr 171:95–102

    Article  PubMed  Google Scholar 

  31. Arai H, Ito M, Ito T et al (2020) Bubbly and cystic appearance on chest radiograph of extremely preterm infants with bronchopulmonary dysplasia is associated with wheezing disorder. Acta Paediatr 109:711–719

    Article  PubMed  Google Scholar 

  32. Arai H, Ito T, Ito M et al (2019) Impact of chest radiography-based definition of bronchopulmonary dysplasia. Pediatr Int 61:258–263

    Article  CAS  PubMed  Google Scholar 

  33. Luo H, Wang L, Chen P et al (2019) Neonatal respiratory status predicts longitudinal respiratory health outcomes in preterm infants. Pediatr Pulmonol 54:814–821

    Article  PubMed  Google Scholar 

  34. Howling SJ, Northway WH, Hansell DM et al (2000) Pulmonary sequelae of bronchopulmonary dysplasia survivors: high-resolution CT findings. AJR Am J Roentgenol 174:1323–1326

    Article  CAS  PubMed  Google Scholar 

  35. Kubota J, Ohki Y, Inoue T et al (1998) Ultrafast CT scoring system for assessing bronchopulmonary dysplasia: reproducibility and clinical correlation. Radiat Med 16:167–164

    CAS  PubMed  Google Scholar 

  36. Aquino SL, Schechter MS, Chiles C et al (1999) High-resolution inspiratory and expiratory CT in older children and adults with bronchopulmonary dysplasia. AJR Am J Roentgenol 173:963–967

    Article  CAS  PubMed  Google Scholar 

  37. Aukland SM, Rosendahl K, Owens CM et al (2009) Neonatal bronchopulmonary dysplasia predicts abnormal pulmonary HRCT scans in long-term survivors of extreme preterm birth. Thorax 64:405

    Article  CAS  PubMed  Google Scholar 

  38. Aukland SM, Halvorsen T, Fosse KR et al (2006) High-resolution CT of the chest in children and young adults who were born prematurely: findings in a population-based study. AJR Am J Roentgenol 187:1012–1018

    Article  PubMed  Google Scholar 

  39. Mahut B, De Blic J, Emond S et al (2007) Chest computed tomography findings in bronchopulmonary dysplasia and correlation with lung function. Arch Dis Child Fetal Neonatal Ed 92:F459

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ochiai M, Hikino S, Yabuuchi H et al (2008) A new scoring system for computed tomography of the chest for assessing the clinical status of bronchopulmonary dysplasia. J Pediatr 152:90–95.e3

    Article  PubMed  Google Scholar 

  41. Bastos Boechat MC, Reis de Mello R, Silveira da Silva K et al (2010) A computed tomography scoring system to assess pulmonary disease among premature infants. Sao Paulo Med J 128:328–335

    Article  Google Scholar 

  42. Caskey S, Gough A, Rowan S et al (2016) Structural and functional lung impairment in adult survivors of bronchopulmonary dysplasia. Ann Am Thorac Soc 13:1262–1270

    Article  PubMed  Google Scholar 

  43. Ronkainen E, Perhomaa M, Mattila L et al (2018) Structural pulmonary abnormalities still evident in schoolchildren with new bronchopulmonary dysplasia. Neonatology 113:122–130

    Article  PubMed  Google Scholar 

  44. Tonson la Tour A, Spadola L, Sayegh Y et al (2013) Chest CT in bronchopulmonary dysplasia: clinical and radiological correlations. Pediatr Pulmonol 48:693–698

    Article  PubMed  Google Scholar 

  45. Sarria EE, Mattiello R, Rao L et al (2011) Computed tomography score and pulmonary function in infants with chronic lung disease of infancy. Eur Respir J 38:918–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sarria EE, Mattiello R, Rao L et al (2011) Quantitative assessment of chronic lung disease of infancy using computed tomography. Eur Respir J 39:992–999

    Article  PubMed  PubMed Central  Google Scholar 

  47. Simpson SJ, Logie KM, O’Dea CA et al (2017) Altered lung structure and function in mid-childhood survivors of very preterm birth. Thorax 72:702

    Article  PubMed  Google Scholar 

  48. Simpson SJ, Turkovic L, Wilson AC et al (2018) Lung function trajectories throughout childhood in survivors of very preterm birth: a longitudinal cohort study. Lancet Child Adolesc Health 2:350–359

    Article  PubMed  Google Scholar 

  49. Spielberg DR, Walkup LL, Stein JM et al (2018) Quantitative CT scans of lung parenchymal pathology in premature infants ages 0–6 years. Pediatr Pulmonol 53:316–323

    Article  PubMed  Google Scholar 

  50. Shin S-M, Kim WS, Cheon J-E et al (2012) Bronchopulmonary dysplasia: new high resolution computed tomography scoring system and correlation between the high resolution computed tomography score and clinical severity. Korean J Radiol 14:350–360

    Article  Google Scholar 

  51. van Mastrigt E, Logie K, Ciet P et al (2016) Lung CT imaging in patients with bronchopulmonary dysplasia: a systematic review. Pediatr Pulmonol 51:975–986

    Article  PubMed  Google Scholar 

  52. May LA, Jadhav SP, Guillerman RP et al (2019) A novel approach using volumetric dynamic airway computed tomography to determine positive end-expiratory pressure (PEEP) settings to maintain airway patency in ventilated infants with bronchopulmonary dysplasia. Pediatr Radiol 49:1276–1284

    Article  PubMed  Google Scholar 

  53. Hysinger EB, Friedman NL, Padula MA et al (2017) Tracheobronchomalacia is associated with increased morbidity in bronchopulmonary dysplasia. Ann Am Thorac Soc 14:1428–1435

    Article  PubMed Central  Google Scholar 

  54. Pennati F, Salito C, Roach D et al (2015) Regional ventilation in infants quantified by multi-volume high resolution computed tomography (HRCT) and multi-volume proton magnetic resonance imaging (MRI). Eur Respir J 46:OA2949

    Google Scholar 

  55. Wu KY, Jensen EA, White AM et al (2019) Characterization of disease phenotype in very preterm infants with severe bronchopulmonary dysplasia. Am J Respir Crit Care Med 201:1398–1406

    Article  Google Scholar 

  56. Walkup LL, Tkach JA, Higano NS et al (2015) Quantitative magnetic resonance imaging of bronchopulmonary dysplasia in the neonatal intensive care unit environment. Am J Respir Crit Care Med 192:1215–1222

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schopper MA, Walkup LL, Tkach JA et al (2017) Evaluation of neonatal lung volume growth by pulmonary magnetic resonance imaging in patients with congenital diaphragmatic hernia. J Pediatrics 188:96–102.e1

    Article  Google Scholar 

  58. Hatabu H, Ohno Y, Gefter WB et al (2020) Expanding applications of pulmonary MRI in the clinical evaluation of lung disorders: Fleischner Society position paper. Radiology 297:286–301

    Article  PubMed  Google Scholar 

  59. Johnson KM, Fain SB, Schiebler ML, Nagle S (2013) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70:1241–1250

    Article  PubMed  Google Scholar 

  60. Lederlin M, Crémillieux Y (2014) Three-dimensional assessment of lung tissue density using a clinical ultrashort echo time at 3 tesla: a feasibility study in healthy subjects. J Magn Reson Imaging 40:839–847

    Article  PubMed  Google Scholar 

  61. Dournes G, Grodzki D, Macey J et al (2015) Quiet submillimeter MR imaging of the lung is feasible with a PETRA sequence at 1.5 T. Radiology 276:258–265

    Article  PubMed  Google Scholar 

  62. Roach DJ, Ruangnapa K, Fleck RJ et al (2019) Structural lung abnormalities on computed tomography correlate with asthma inflammation in bronchoscopic alveolar lavage fluid. J Asthma 57:968–979

    Article  PubMed  Google Scholar 

  63. Willmering MM, Robison RK, Wang H et al (2019) Implementation of the FLORET UTE sequence for lung imaging. Magn Reson Med 82:1091–1100

    PubMed  PubMed Central  Google Scholar 

  64. Nozawa K, Niwa T, Aida N (2019) Imaging of cystic lung lesions in infants using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med Sci 18:299–300

    Article  PubMed  Google Scholar 

  65. Higano NS, Fleck RJ, Spielberg DR et al (2017) Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT. J Magn Reson Imaging 46:992–1000

  66. Higano N, Fleck R, Schapiro A et al (2020) Lung MRI in neonatal bronchopulmonary dysplasia: objective quantification of lung density abnormalities correlates with short-term respiratory outcomes. Am J Respir Crit Car Med 201:A5973

    Google Scholar 

  67. Weick S, Breuer FA, Ehses P et al (2013) DC-gated high resolution three-dimensional lung imaging during free-breathing. J Magn Reson Imaging 37:727–732

    Article  PubMed  Google Scholar 

  68. Richter JAJ, Wech T, Weng AM et al (2020) Free-breathing self-gated 4D lung MRI using wave-CAIPI. Magn Reson Med 84:3223–3233

    Article  PubMed  Google Scholar 

  69. Higano NS, Hahn AD, Tkach JA et al (2017) Retrospective respiratory self-gating and removal of bulk motion in pulmonary UTE MRI of neonates and adults. Magn Reson Med 77:1284–1295

    Article  PubMed  Google Scholar 

  70. Jiang W, Ong F, Johnson KM et al (2018) Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator. Magn Reson Med 79:2954–2967

    Article  PubMed  Google Scholar 

  71. Tibiletti M, Bianchi A, Kjørstad Å et al (2017) Respiratory self-gated 3D UTE for lung imaging in small animal MRI. Magn Reson Med 78:739–745

    Article  CAS  PubMed  Google Scholar 

  72. Zhu X, Chan M, Lustig M et al (2020) Iterative motion-compensation reconstruction ultra-short TE (iMoCo UTE) for high-resolution free-breathing pulmonary MRI. Magn Reson Med 83:1208–1221

    Article  PubMed  Google Scholar 

  73. Yoder LM, Higano NS, Schapiro AH et al (2019) Elevated lung volumes in neonates with bronchopulmonary dysplasia measured via MRI. Pediatr Pulmonol 54:1311–1318

    PubMed  Google Scholar 

  74. Bates AJ, Higano NS, Hysinger EB et al (2019) Quantitative assessment of regional dynamic airway collapse in neonates via retrospectively respiratory-gated 1H ultrashort echo time MRI. J Magn Reson Imaging 49:659–667

    Article  PubMed  Google Scholar 

  75. Hysinger EB, Bates AJ, Higano NS et al (2020) Ultrashort echo-time MRI for the assessment of tracheomalacia in neonates. Chest 157:595–602

    Article  PubMed  Google Scholar 

  76. Gunatilaka CC, Higano NS, Hysinger EB et al (2020) Increased work of breathing due to tracheomalacia in neonates. Ann Am Thorac Soc 17:1247–1256

    Article  PubMed  PubMed Central  Google Scholar 

  77. Guerrero T, Sanders K, Noyola-Martinez J et al (2005) Quantification of regional ventilation from treatment planning CT. Int J Radiat Oncol Biol Phys 62:630–634

    Article  PubMed  Google Scholar 

  78. Capaldi DPI, Guo F, Xing L, Parraga G (2020) Pulmonary ventilation maps generated with free-breathing proton MRI and a deep convolutional neural network. Radiology 298:427–438

    Article  PubMed  Google Scholar 

  79. Lutey BA, Lefrak SS, Woods JC et al (2008) Hyperpolarized 3He MR imaging: physiologic monitoring observations and safety considerations in 100 consecutive subjects. Radiology 248:655–661

    Article  PubMed  PubMed Central  Google Scholar 

  80. Driehuys B, Martinez-Jimenez S, Cleveland ZI et al (2012) Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology 262:279–289

    Article  PubMed  PubMed Central  Google Scholar 

  81. Walkup LL, Thomen RP, Akinyi TG et al (2016) Feasibility, tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol 46:1651–1662

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fain SB, Panth SR, Evans MD et al (2006) Early emphysematous changes in asymptomatic smokers: detection with 3He MR imaging. Radiology 239:875–883

    Article  PubMed  Google Scholar 

  83. Thomen RP, Walkup LL, Roach DJ et al (2020) Regional structure-function in cystic fibrosis lung disease using hyperpolarized 129Xe and ultrashort echo magnetic resonance imaging. Am J Respir Crit Care Med 202:290–292

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cadman RV, Lemanske RF, Evans MD et al (2013) Pulmonary 3He magnetic resonance imaging of childhood asthma. J Allergy Clin Immunol 131(369–376):e1–5

    Google Scholar 

  85. Altes TA, Meyer CH, Mata JF et al (2017) Hyperpolarized helium-3 magnetic resonance lung imaging of non-sedated infants and young children: a proof-of-concept study. Clin Imaging 45:105–110

    Article  PubMed  Google Scholar 

  86. Woods JC, Choong CK, Yablonskiy DA et al (2006) Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema. Magn Reson Med 56:1293–1300

    Article  PubMed  PubMed Central  Google Scholar 

  87. Flors L, Mugler JP, Paget-Brown A et al (2017) Hyperpolarized helium-3 diffusion-weighted magnetic resonance imaging detects abnormalities of lung structure in children with bronchopulmonary dysplasia. J Thorac Imaging 32:323–332

    Article  PubMed  Google Scholar 

  88. Higano NS, Thomen RP, Quirk JD et al (2021) Alveolar airspace size in healthy and diseased infant lungs measured via hyperpolarized 3He gas diffusion magnetic resonance imaging. Neonatology 117:704–712

    Article  CAS  Google Scholar 

  89. Deoras KS, Wolfson MR, Searls RL et al (1991) Developmental changes in tracheal structure. Pediatr Res 30:170–175

    Article  CAS  PubMed  Google Scholar 

  90. Deoras KS, Wolfson MR, Bhutani VK, Shaffer TH (1989) Structural changes in the tracheae of preterm lambs induced by ventilation. Pediatr Res 26:434–437

    Article  CAS  PubMed  Google Scholar 

  91. Croteau JR, Cook CD (1961) Volume-pressure and length-tension measurements in human tracheal and bronchial segments. J Appl Physiol 16:170–172

    Article  CAS  PubMed  Google Scholar 

  92. Bhutani VK, Shaffer TH (1982) Time-dependent tracheal deformation in fetal, neonatal, and adult rabbits. Pediatr Res 16:830–833

    Article  CAS  PubMed  Google Scholar 

  93. Cohn RC, Kercsmar C, Dearborn D (1988) Safety and efficacy of flexible endoscopy in children with bronchopulmonary dysplasia. Am J Dis Child 142:1225–1228

    CAS  PubMed  Google Scholar 

  94. Wallis C, Alexopoulou E, Antón-Pacheco JL et al (2019) ERS statement on tracheomalacia and bronchomalacia in children. Eur Respir J 54:1900382

    Article  PubMed  Google Scholar 

  95. Lagatta JM, Hysinger EB, Zaniletti I et al (2018) The impact of pulmonary hypertension in preterm infants with severe bronchopulmonary dysplasia through 1 year. J Pediatrics 203:218–224.e3

    Article  Google Scholar 

  96. Walner DL, Loewen MS, Kimura RE (2001) Neonatal subglottic stenosis — incidence and trends. Laryngoscope 111:48–51

    Article  CAS  PubMed  Google Scholar 

  97. Thomas RE, Rao SC, Minutillo C et al (2018) Severe acquired subglottic stenosis in neonatal intensive care graduates: a case–control study. Arch Dis Child Fetal Neonatal Ed 103:F349–F354

    Article  PubMed  Google Scholar 

  98. Myer CM, O’Connor DM, Cotton RT (1994) Proposed grading system for subglottic stenosis based on endotracheal tube sizes. Ann Otol Rhinol Laryngol 103:319–323

    Article  PubMed  Google Scholar 

  99. Lang M, Brietzke SE (2013) A systematic review and meta-analysis of endoscopic balloon dilation of pediatric subglottic stenosis. Otolaryngol Head Neck Surg 150:174–179

    Article  PubMed  Google Scholar 

  100. Maresh A, Preciado DA, O’Connell AP, Zalzal GH (2014) A comparative analysis of open surgery vs endoscopic balloon dilation for pediatric subglottic stenosis. JAMA Otolaryngol Head Neck Surg 140:901–905

    Article  PubMed  Google Scholar 

  101. Faust RA, Rimell FL, Remley KB (2002) Cine magnetic resonance imaging for evaluation of focal tracheomalacia: innominate artery compression syndrome. Int J Pediatr Otorhinolaryngol 65:27–33

    Article  PubMed  Google Scholar 

  102. Faust RA, Remley KB, Rimell FL (2001) Real-time, cine magnetic resonance imaging for evaluation of the pediatric airway. Laryngoscope 111:2187–2190

    Article  CAS  PubMed  Google Scholar 

  103. Gandhi DB, Rice A, Gunatilaka CC et al (2021) Quantitative evaluation of subglottic stenosis using ultrashort echo time MRI in a rabbit model. Laryngoscope 131:E1971–E1979

    Article  PubMed  Google Scholar 

  104. Poynot WJ, Gonthier KA, Dunham ME, Crosby TW (2020) Classification of tracheal stenosis in children based on computational aerodynamics. J Biomech 104:109752

    Article  PubMed  Google Scholar 

  105. Lin EL, Bock JM, Zdanski CJ et al (2018) Relationship between degree of obstruction and airflow limitation in subglottic stenosis. Laryngoscope 128:1551–1557

    Article  PubMed  Google Scholar 

  106. Greenberg SB (2012) Dynamic pulmonary CT of children. AJR Am J Roentgenol 199:435–440

    Article  PubMed  Google Scholar 

  107. Lee S, Im SA, Yoon J (2014) Tracheobronchomalacia in infants: the use of non-breath held 3D CT bronchoscopy. Pediatr Pulmonol 49:1028–1035

    Article  PubMed  Google Scholar 

  108. Tan JZ, Crossett M, Ditchfield M (2013) Dynamic volumetric computed tomographic assessment of the young paediatric airway: initial experience of rapid, non-invasive, four-dimensional technique. J Med Imaging Radiat Oncol 57:141–148

    Article  PubMed  Google Scholar 

  109. Ullmann N, Secinaro A, Menchini L et al (2018) Dynamic expiratory CT: an effective non-invasive diagnostic exam for fragile children with suspected tracheo-bronchomalacia. Pediatr Pulmonol 53:73–80

    Article  PubMed  Google Scholar 

  110. Douros K, Kremmydas G, Grammeniatis V et al (2019) Helical multi-detector CT scan as a tool for diagnosing tracheomalacia in children. Pediatr Pulmonol 54:47–52

    Article  PubMed  Google Scholar 

  111. Goo HW (2013) Free-breathing cine CT for the diagnosis of tracheomalacia in young children. Pediatr Radiol 43:922–928

    Article  PubMed  Google Scholar 

  112. Mok Q, Negus S, McLaren CA et al (2005) Computed tomography versus bronchography in the diagnosis and management of tracheobronchomalacia in ventilator dependent infants. Arch Dis Child Fetal Neonatal Ed 90:F290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mourani PM, Mandell EW, Meier M et al (2018) Early pulmonary vascular disease in preterm infants is associated with late respiratory outcomes in childhood. Am J Respir Crit Care Med 199:1020–1027

    Article  Google Scholar 

  114. Mourani PM, Sontag MK, Younoszai A et al (2015) Early pulmonary vascular disease in preterm infants at risk for bronchopulmonary dysplasia. Am J Respir Crit Care Med 191:87–95

    Article  PubMed  PubMed Central  Google Scholar 

  115. Goss KN, Everett AD, Mourani PM et al (2017) Addressing the challenges of phenotyping pediatric pulmonary vascular disease. Pulm Circ 7:7–19

    Article  PubMed  PubMed Central  Google Scholar 

  116. Arjaans S, Zwart EAH, Ploegstra M et al (2018) Identification of gaps in the current knowledge on pulmonary hypertension in extremely preterm infants: a systematic review and meta-analysis. Paediatr Perinat Epidemiol 32:258–267

    Article  PubMed  Google Scholar 

  117. An HS, Bae EJ, Kim GB et al (2010) Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Korean Circ J 40:131–136

    Article  PubMed  PubMed Central  Google Scholar 

  118. Bhat R, Salas AA, Foster C et al (2012) Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics 129:e682–e689

    Article  PubMed  PubMed Central  Google Scholar 

  119. Khemani E, McElhinney DB, Rhein L et al (2007) Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: clinical features and outcomes in the surfactant era. Pediatrics 120:1260–1269

    Article  PubMed  Google Scholar 

  120. Mirza H, Ziegler J, Ford S et al (2014) Pulmonary hypertension in preterm infants: prevalence and association with bronchopulmonary dysplasia. J Pediatrics 165:909–914.e1

    Article  Google Scholar 

  121. Abman SH, Hansmann G, Archer SL et al (2015) Pediatric pulmonary hypertension. Circulation 132:2037–2099

    Article  PubMed  Google Scholar 

  122. Krishnan U, Feinstein JA, Adatia I et al (2017) Evaluation and management of pulmonary hypertension in children with bronchopulmonary dysplasia. J Pediatrics 188:24–34.e1

    Article  Google Scholar 

  123. Levy PT, Jain A, Nawaytou H et al (2020) Risk assessment and monitoring of chronic pulmonary hypertension in premature infants. J Pediatrics 217:199–209.e4

    Article  Google Scholar 

  124. Mahgoub L, Kaddoura T, Kameny AR et al (2017) Pulmonary vein stenosis of ex-premature infants with pulmonary hypertension and bronchopulmonary dysplasia, epidemiology, and survival from a multicenter cohort. Pediatr Pulmonol 52:1063–1070

    Article  PubMed  Google Scholar 

  125. Swier N, Richards B, Cua C et al (2016) Pulmonary vein stenosis in neonates with severe bronchopulmonary dysplasia. Am J Perinatol 33:671–677

    Article  PubMed  Google Scholar 

  126. Frank DB, Levy PT, Stiver CA et al (2021) Primary pulmonary vein stenosis during infancy: state of the art review. J Perinatol 41:1528–1539

    Article  PubMed  Google Scholar 

  127. Frank BS, Schäfer M, Grenolds A et al (2019) Acute vasoreactivity testing during cardiac catheterization of neonates with bronchopulmonary dysplasia-associated pulmonary hypertension. J Pediatrics 208:127–133

    Article  Google Scholar 

  128. Compton GL, Florence J, MacDonald C et al (2015) Main pulmonary artery–to–ascending aorta diameter ratio in healthy children on MDCT. AJR Am J Roentgenol 205:1322–1325

    Article  PubMed  Google Scholar 

  129. Caro-Domínguez P, Compton G, Humpl T, Manson DE (2016) Pulmonary arterial hypertension in children: diagnosis using ratio of main pulmonary artery to ascending aorta diameter as determined by multi-detector computed tomography. Pediatr Radiol 46:1378–1383

    Article  PubMed  Google Scholar 

  130. Chen S-J, Huang J-H, Lee W-J et al (2019) Diagnosis of pulmonary arterial hypertension in children by using cardiac computed tomography. Korean J Radiol 20:976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. del Cerro MJ, Rotés AS, Cartón A et al (2014) Pulmonary hypertension in bronchopulmonary dysplasia: clinical findings, cardiovascular anomalies and outcomes. Pediatr Pulmonol 49:49–59

    Article  PubMed  Google Scholar 

  132. van de Veerdonk MC, Kind T, Marcus JT et al (2011) Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol 58:2511–2519

    Article  PubMed  Google Scholar 

  133. Moledina S, Pandya B, Bartsota M et al (2013) Prognostic significance of cardiac magnetic resonance imaging in children with pulmonary hypertension. Circ Cardiovasc Imaging 6:407–414

    Article  PubMed  Google Scholar 

  134. Critser PJ, Higano NS, Tkach JA et al (2019) Cardiac magnetic resonance imaging evaluation of neonatal bronchopulmonary dysplasia–associated pulmonary hypertension. Am J Respir Crit Care Med 201:73–82

    Article  Google Scholar 

  135. Pandya B, Quail MA, Steeden JA et al (2018) Real-time magnetic resonance assessment of septal curvature accurately tracks acute hemodynamic changes in pediatric pulmonary hypertension. Circ Cardiovasc Imaging 7:706–713

    Article  Google Scholar 

  136. Burkett DA, Patel SS, Mertens L et al (2020) Relationship between left ventricular geometry and invasive hemodynamics in pediatric pulmonary hypertension. Circ Cardiovasc Imaging 13:e009825

    Article  PubMed  PubMed Central  Google Scholar 

  137. Critser PJ, Higano NS, Lang SM et al (2020) Cardiovascular magnetic resonance imaging derived septal curvature in neonates with bronchopulmonary dysplasia associated pulmonary hypertension. J Cardiovasc Magn Reson 22:50

    Article  PubMed  PubMed Central  Google Scholar 

  138. Cohen JL, Nees SN, Valencia GA et al (2019) Sildenafil use in children with pulmonary hypertension. J Pediatrics 205:29–34.e1

    Article  CAS  Google Scholar 

  139. Altit G, Bhombal S, Hopper RK et al (2019) Death or resolution: the “natural history” of pulmonary hypertension in bronchopulmonary dysplasia. J Perinatol 39:415–425

    Article  PubMed  Google Scholar 

  140. Levy PT, Patel MD, Choudhry S et al (2018) Evidence of echocardiographic markers of pulmonary vascular disease in asymptomatic infants born preterm at one year of age. J Pediatrics 197:48–56.e2

    Article  Google Scholar 

  141. Goss KN, Beshish AG, Barton GP et al (2018) Early pulmonary vascular disease in young adults born preterm. Am J Respir Crit Care Med 198:1549–1558

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Fleck.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higano, N.S., Bates, A.J., Gunatilaka, C.C. et al. Bronchopulmonary dysplasia from chest radiographs to magnetic resonance imaging and computed tomography: adding value. Pediatr Radiol 52, 643–660 (2022). https://doi.org/10.1007/s00247-021-05250-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05250-1

Keywords

Navigation