Skip to main content

Advertisement

Log in

Computed tomography of pulmonary veins: review of congenital and acquired pathologies

  • Minisymposium: Pediatric cardiovascular CT
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Newer-generation CT scanners with ultrawide detectors or dual sources offer millisecond image acquisition times and significantly decreased radiation doses compared to historical cardiac CT and CT angiography. This technology is capable of nearly freezing cardiac and respiratory motion. As a result, CT is increasingly used for diagnosing and monitoring cardiac and vascular abnormalities in the pediatric population. CT is particularly useful in the setting of pulmonary vein evaluation because it offers evaluation of the entire pulmonary venous system and lung parenchyma. In this article we review a spectrum of congenital and acquired pulmonary venous abnormalities, including potential etiologies, CT imaging findings and important factors of preoperative planning. In addition, we discuss optimization of CT techniques for evaluating the pulmonary veins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Valsangiacomo ER, Levasseur S, McCrindle BW et al (2003) Contrast-enhanced MR angiography of pulmonary venous abnormalities in children. Pediatr Radiol 33:92–98

    Article  PubMed  Google Scholar 

  2. Long CM, Long SS, Johnson PT et al (2015) Utility of low-dose high-pitch scanning for pediatric cardiac computed tomographic imaging. J Thorac Imaging 30:W36–W40

    Article  PubMed  Google Scholar 

  3. Rigsby CK, McKenney SE, Hill KD et al (2018) Radiation dose management for pediatric cardiac computed tomography: a report from the Image Gently “Have-A-Heart” campaign. Pediatr Radiol 48:5–20

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ou P, Marini D, Celermajer DS et al (2009) Non-invasive assessment of congenital pulmonary vein stenosis in children using cardiac-non-gated CT with 64-slice technology. Eur J Radiol 70:595–599

    Article  PubMed  Google Scholar 

  5. Lell MM, May M, Deak P et al (2011) High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Invest Radiol 46:116–123

    Article  PubMed  Google Scholar 

  6. Sriharan M, Lazoura O, Pavitt CW et al (2016) Evaluation of high-pitch ungated pediatric cardiovascular computed tomography for the assessment of cardiac structures in neonates. J Thorac Imaging 31:177–182

    Article  PubMed  Google Scholar 

  7. Muhr J, Ackerman KM (2021) Embryology, gastrulation. In: StatPearls. StatPearls Publishing, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK554394/. Accessed 24 Sep 2021

  8. van den Berg G, Moorman AFM (2011) Development of the pulmonary vein and the systemic venous sinus: an interactive 3D overview. PloS One 6:e22055

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schittny JC (2017) Development of the lung. Cell Tissue Res 367:427–444

    Article  PubMed  PubMed Central  Google Scholar 

  10. Latson LA, Prieto LR (2007) Congenital and acquired pulmonary vein stenosis. Circulation 115:103–108

    Article  PubMed  Google Scholar 

  11. Douglas YL, Jongbloed MRM, DeRuiter MC, Gittenberger-de Groot AC (2011) Normal and abnormal development of pulmonary veins: state of the art and correlation with clinical entities. Int J Cardiol 147:13–24

    Article  PubMed  Google Scholar 

  12. Porres DV, Morenza ÓP, Pallisa E et al (2013) Learning from the pulmonary veins. Radiographics 33:999–1022

    Article  PubMed  Google Scholar 

  13. Zylak CJ, Eyler WR, Spizarny DL, Stone CH (2002) Developmental lung anomalies in the adult: radiologic-pathologic correlation. Radiographics 22:S25–S43

    Article  PubMed  Google Scholar 

  14. Xiang M, Wu C, Pan Z et al (2020) Mixed type of total anomalous pulmonary venous connection: diagnosis, surgical approach and outcomes. J Cardiothorac Surg 15:293

    Article  PubMed  PubMed Central  Google Scholar 

  15. Files MD, Morray B (2017) Total anomalous pulmonary venous connection: preoperative anatomy, physiology, imaging, and interventional management of postoperative pulmonary venous obstruction. Semin Cardiothorac Vasc Anesth 21:123–131

    Article  PubMed  Google Scholar 

  16. Karamlou T, Gurofsky R, Al Sukhni E et al (2007) Factors associated with mortality and reoperation in 377 children with total anomalous pulmonary venous connection. Circulation 115:1591–1598

    Article  PubMed  Google Scholar 

  17. Hassani C, Saremi F (2017) Comprehensive cross-sectional imaging of the pulmonary veins. Radiographics 37:1928–1954

    Article  PubMed  Google Scholar 

  18. Xiang Y, Cheng G, Jin K et al (2018) Computed tomography findings and preoperative risk factors for mortality of total anomalous pulmonary venous connection. Int J Cardiovasc Imaging 34:1969–1975

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kogon B, Fernandez J, Shashidharan S et al (2017) A 30-year experience with mixed-type total anomalous pulmonary venous connection: a word of caution. Cardiol Young 27:870–876

    Article  PubMed  Google Scholar 

  20. Chamberlain RC, Hill KD, Fleming GA (2020) Palliating premature infants with obstructed total anomalous pulmonary venous connection via catheterization. World J Pediatr Congenit Heart Surg 11:NP164–NP167

    Article  PubMed  Google Scholar 

  21. Ho DY, White BR, Glatz AC et al (2018) Postoperative obstruction of the pulmonary veins in mixed total anomalous pulmonary venous connection. Pediatr Cardiol 39:1489–1495

    Article  PubMed  Google Scholar 

  22. Haramati LB, Moche IE, Rivera VT et al (2003) Computed tomography of partial anomalous pulmonary venous connection in adults. J Comput Assist Tomogr 27:743–749

    Article  PubMed  Google Scholar 

  23. Dillman JR, Yarram SG, Hernandez RJ (2009) Imaging of pulmonary venous developmental anomalies. AJR Am J Roentgenol 192:1272–1285

    Article  PubMed  Google Scholar 

  24. Dillon EH, Camputaro C (1993) Partial anomalous pulmonary venous drainage of the left upper lobe vs duplication of the superior vena cava: distinction based on CT findings. AJR Am J Roentgenol 160:375–379

    Article  PubMed  CAS  Google Scholar 

  25. Katre R, Burns SK, Murillo H et al (2012) Anomalous pulmonary venous connections. Semin Ultrasound CT MRI 33:485–499

    Article  Google Scholar 

  26. Toyoshima M, Sato A, Fukumoto Y et al (1992) Partial anomalous pulmonary venous return showing anomalous venous return to the azygos vein. Intern Med 31:1112–1116

    Article  PubMed  CAS  Google Scholar 

  27. Ho M-L, Bhalla S, Bierhals A, Gutierrez F (2009) MDCT of partial anomalous pulmonary venous return (PAPVR) in adults. J Thorac Imaging 24:89–95

    Article  PubMed  Google Scholar 

  28. Alsoufi B, Cai S, Van Arsdell GS et al (2007) Outcomes after surgical treatment of children with partial anomalous pulmonary venous connection. Ann Thorac Surg 84:2020–2026

    Article  PubMed  Google Scholar 

  29. Vida VL, Padalino MA, Boccuzzo G et al (2010) Scimitar syndrome: a European Congenital Heart Surgeons Association (ECHSA) multicentric study. Circulation 122:1159–1166

    Article  PubMed  Google Scholar 

  30. Wang H, Kalfa D, Rosenbaum MS et al (2018) Scimitar syndrome in children and adults: natural history, outcomes, and risk analysis. Ann Thorac Surg 105:592–598

    Article  PubMed  Google Scholar 

  31. Shibuya K, Smallhorn JE, McCrindle BW (1996) Echocardiographic clues and accuracy in the diagnosis of scimitar syndrome. J Am Soc Echocardiogr 9:174–181

    Article  PubMed  CAS  Google Scholar 

  32. Masrani A, McWilliams S, Bhalla S, Woodard PK (2018) Anatomical associations and radiological characteristics of scimitar syndrome on CT and MR. J Cardiovasc Comput Tomogr 12:286–289

    Article  PubMed  Google Scholar 

  33. White CS, Baffa JM, Haney PJ et al (1997) MR imaging of congenital anomalies of the thoracic veins. Radiographics 17:595–608

    Article  PubMed  CAS  Google Scholar 

  34. Winter FS (1954) Persistent left superior vena cava; survey of world literature and report of thirty additional cases. Angiology 5:90–132

    Article  PubMed  CAS  Google Scholar 

  35. Mardini MK, Sakati NA, Nyhan WL (1981) Anomalous left pulmonary venous drainage to the inferior vena cava and through the pericardiophrenic vein to the innominate vein: left-sided scimitar syndrome. Am Heart J 101:860–863

    Article  PubMed  CAS  Google Scholar 

  36. Warden HE, Gustafson RA, Tarnay TJ, Neal WA (1984) An alternative method for repair of partial anomalous pulmonary venous connection to the superior vena cava. Ann Thorac Surg 38:601–605

    Article  PubMed  CAS  Google Scholar 

  37. Korkmaz AA, Yildiz CE, Onan B et al (2011) Scimitar syndrome: a complex form of anomalous pulmonary venous return. J Card Surg 26:529–534

    Article  PubMed  Google Scholar 

  38. Thupili CR, Udayasankar U, Renapurkar R (2015) Bilateral meandering pulmonary veins. Pediatr Radiol 45:924–926

    Article  PubMed  Google Scholar 

  39. Goodman LR, Jamshidi A, Hipona FA (1972) Meandering right pulmonary vein simulating the scimitar syndrome. Chest 62:510–512

    Article  PubMed  CAS  Google Scholar 

  40. Odenthal C, Sarikwal A (2012) Anomalous unilateral single pulmonary vein versus scimitar syndrome: comparison of two paediatric cases and a review of the literature. J Med Imaging Radiat Oncol 56:247–254

    Article  PubMed  Google Scholar 

  41. Yoo S-J, Al-Otay A, Babyn P (2006) The relationship between scimitar syndrome, so-called scimitar variant, meandering right pulmonary vein, horseshoe lung and pulmonary arterial sling. Cardiol Young 16:300–304

    Article  PubMed  Google Scholar 

  42. Remy-Jardin M, Remy J (1999) Spiral CT angiography of the pulmonary circulation. Radiology 212:615–636

    Article  PubMed  CAS  Google Scholar 

  43. Agarwal P, Ghadimi Mahani M, Lu J, Dorfman A (2015) Levoatriocardinal vein and mimics: spectrum of imaging findings. AJR Am J Roentgenol 205:W162-171

    Article  PubMed  Google Scholar 

  44. Cerqueira RJ, Miranda JO, Carneiro A, Casanova J (2020) Levoatrial cardinal vein with left-to-right shunt in a neonate: multi-imaging diagnosis. Rev Port Cardiol 39:291–293

    Article  PubMed  Google Scholar 

  45. Kaneda T, Onoe M, Matsuda M et al (2006) Patent levoatrial cardinal vein without left heart hypoplasia. Ann Thorac Surg 81:740–742

    Article  PubMed  Google Scholar 

  46. Jha AK, Makhija N (2017) Cor triatriatum: a review. Semin Cardiothorac Vasc Anesth 21:178–185

    Article  PubMed  Google Scholar 

  47. Herlong JR, Jaggers JJ, Ungerleider RM (2000) Congenital Heart Surgery Nomenclature and Database Project: pulmonary venous anomalies. Ann Thorac Surg 69:56–69

    Article  Google Scholar 

  48. Niwayama G (1960) Cor triatriatum. Am Heart J 59:291–317

    Article  PubMed  CAS  Google Scholar 

  49. Loeffler E (1949) Unusual malformation of the left atrium; pulmonary sinus. Arch Pathol 48:371–376

    CAS  Google Scholar 

  50. Lam CR, Green E, Drake E (1962) Diagnosis and surgical correction of 2 types of triatrial heart. Surgery 51:127–137

    PubMed  CAS  Google Scholar 

  51. Marín-García J, Tandon R, Lucas RV, Edwards JE (1975) Cor triatriatum: study of 20 cases. Am J Cardiol 35:59–66

    Article  PubMed  Google Scholar 

  52. Rodefeld MD, Brown JW, Heimansohn DA et al (1990) Cor triatriatum: clinical presentation and surgical results in 12 patients. Ann Thorac Surg 50:562–568

    Article  PubMed  CAS  Google Scholar 

  53. Al Kindi HN, Shehata M, Ibrahim AM et al (2020) Cor triatriatum sinister (divided left atrium): histopathologic features and clinical management. Ann Thorac Surg 110:1380–1386

    Article  PubMed  Google Scholar 

  54. Gonzalez-Ramirez N, Castillo-Castellon F, Kimura-Hayama E (2012) Cor triatriatum sinister versus bowed septum primum in an infant with total anomalous pulmonary venous connection: a difficult imaging distinction. Pediatr Radiol 42:1254–1258

    Article  PubMed  Google Scholar 

  55. Marini D, Ou P (2009) Cor triatriatum in a newborn. Pediatr Radiol 39:879–879

    Article  PubMed  Google Scholar 

  56. Fuchs MM, Connolly HM, Said SM, Egbe AC (2018) Outcomes in patients with cor triatriatum sinister. Congenit Heart Dis 13:628–632

    Article  PubMed  Google Scholar 

  57. Perez M, Kumar TKS, Briceno-Medina M et al (2016) Common pulmonary vein atresia: report of three cases and review of the literature. Cardiol Young 26:629–635

    Article  PubMed  Google Scholar 

  58. Goo HW, Park S-H, Koo HJ et al (2014) Atresia of the bilateral pulmonary veins: a rare and dismal anomaly identified on cardiac CT. Pediatr Radiol 44:942–947

    Article  PubMed  Google Scholar 

  59. Tang C, Duan H, Zhou K et al (2018) Isolated unilateral pulmonary vein atresia with hemoptysis in a child. Medicine 97:e11882

    Article  PubMed  PubMed Central  Google Scholar 

  60. Swischuk LE, L’Heureux P (1980) Unilateral pulmonary vein atresia. AJR Am J Roentgenol 135:667–672

    Article  PubMed  CAS  Google Scholar 

  61. Heyneman LE, Nolan RL, Harrison JK, McAdams HP (2001) Congenital unilateral pulmonary vein atresia: radiologic findings in three adult patients. AJR Am J Roentgenol 177:681–685

    Article  PubMed  CAS  Google Scholar 

  62. Saida Y, Eguchi N, Mori K et al (1999) Isolated pulmonary vein stenosis associated with full intrapulmonary compensation. AJR Am J Roentgenol 173:961–962

    Article  PubMed  CAS  Google Scholar 

  63. Abujudeh H (2004) Pulmonary varix: blood flow is essential in the diagnosis. Pediatr Radiol 34:567–569

    Article  PubMed  Google Scholar 

  64. Gleason JB, Shekar SP, Hernandez F et al (2017) Pulmonary varix: an uncommon pulmonary vascular anomaly. Clin Pulm Med 24:87–91

    Article  Google Scholar 

  65. Devaney EJ, Chang AC, Ohye RG, Bove EL (2006) Management of congenital and acquired pulmonary vein stenosis. Ann Thorac Surg 81:992–996

    Article  PubMed  Google Scholar 

  66. Seale AN, Webber SA, Uemura H et al (2009) Pulmonary vein stenosis: the UK, Ireland and Sweden collaborative study. Heart 95:1944–1949

    Article  PubMed  CAS  Google Scholar 

  67. Drossner DM, Kim DW, Maher KO, Mahle WT (2008) Pulmonary vein stenosis: prematurity and associated conditions. Pediatrics 122:e656–e661

    Article  PubMed  Google Scholar 

  68. Vanderlaan RD, Rome J, Hirsch R et al (2020) Pulmonary vein stenosis: treatment and challenges. J Thorac Cardiovasc Surg. https://doi.org/10.1016/j.jtcvs.2020.05.117

    Article  PubMed  Google Scholar 

  69. Barrera CA, Saul D, Rapp JB et al (2020) Diagnostic performance of CT angiography to detect pulmonary vein stenosis in children. Int J Cardiovasc Imaging 36:141–147

    Article  PubMed  Google Scholar 

  70. Kim Y-H, Marom EM, Herndon JE, McAdams HP (2005) Pulmonary vein diameter, cross-sectional area, and shape: CT analysis. Radiology 235:43–49

    Article  PubMed  Google Scholar 

  71. Driscoll DJ, Hesslein PS, Mullins CE (1982) Congenital stenosis of individual pulmonary veins: clinical spectrum and unsuccessful treatment by transvenous balloon dilation. Am J Cardiol 49:1767–1772

    Article  PubMed  CAS  Google Scholar 

  72. Kalfa D, Belli E, Bacha E et al (2018) Outcomes and prognostic factors for postsurgical pulmonary vein stenosis in the current era. J Thorac Cardiovasc Surg 156:278–286

    Article  PubMed  Google Scholar 

  73. Breinholt JP, Hawkins JA, Minich LA et al (1999) Pulmonary vein stenosis with normal connection: associated cardiac abnormalities and variable outcome. Ann Thorac Surg 68:164–168

    Article  PubMed  CAS  Google Scholar 

  74. Kalfa D, Belli E, Bacha E et al (2017) Primary pulmonary vein stenosis: outcomes, risk factors, and severity score in a multicentric study. Ann Thorac Surg 104:182–189

    Article  PubMed  Google Scholar 

  75. Quinonez LG, Gauvreau K, Borisuk M et al (2015) Outcomes of surgery for young children with multivessel pulmonary vein stenosis. J Thorac Cardiovasc Surg 150:911–917

    Article  PubMed  Google Scholar 

  76. Peña E, Dennie C, Veinot J, Muñiz SH (2012) Pulmonary hypertension: how the radiologist can help. Radiographics 32:9–32

    Article  PubMed  Google Scholar 

  77. Chaisson NF, Dodson MW, Elliott CG (2016) Pulmonary capillary hemangiomatosis and pulmonary veno-occlusive disease. Clin Chest Med 37:523–534

    Article  PubMed  Google Scholar 

  78. Delhaye C, Walsdorff M, Hackx M (2020) Case 276: pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis disease. Radiology 295:240–244

    Article  PubMed  Google Scholar 

  79. Frazier AA, Franks TJ, Mohammed T-LH et al (2007) Pulmonary veno-occlusive disease and pulmonary capillary hemangiomatosis. Radiographics 27:867–882

    Article  PubMed  Google Scholar 

  80. Weatherald J, Dorfmüller P, Perros F et al (2020) Pulmonary capillary haemangiomatosis: a distinct entity? Eur Respir Rev 29:190168

    Article  PubMed  PubMed Central  Google Scholar 

  81. Montani D, Lau EM, Dorfmüller P et al (2016) Pulmonary veno-occlusive disease. Eur Respir J 47:1518–1534

    Article  PubMed  Google Scholar 

  82. Saboo SS, Chamarthy M, Bhalla S et al (2018) Pulmonary arteriovenous malformations: diagnosis. Cardiovasc Diagn Ther 8:325–337

    Article  PubMed  PubMed Central  Google Scholar 

  83. Aregullin EO, Kaley VR, Vettukattil JJ (2019) Pulmonary arteriovenous malformations leading to hypoxemia in child with primary ciliary dyskinesia. Pediatr Pulmonol 54:E7–E9

    Article  PubMed  Google Scholar 

  84. Remy J, Remy-Jardin M, Giraud F, Wattinne L (1994) Angioarchitecture of pulmonary arteriovenous malformations: clinical utility of three-dimensional helical CT. Radiology 191:657–664

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lincoln R. Ferguson for image production of Figs. 1 and 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin K. Romberg.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1898 KB) Online Supplementary Material 1 Type 1 total anomalous pulmonary venous connection (TAPVC). CT angiography of a 1-day-old girl with abnormal echocardiography. Coronal maximum-intensity projection images demonstrate right and left pulmonary venous drainage into a common vein coursing superiorly in the left lung, which then takes a tortuous course through the superior mediastinum before extending vertically and draining into the innominate vein. Also present is complex congenital heart disease, including double outlet right ventricle with malposed great vessels, right aortic arch with mirror image branching, and vertebral segmentation anomalies

Supplementary file2 (MP4 9236 KB) Online Supplementary Material 2 Type 2 total anomalous pulmonary venous connection (TAPVC). CT angiography in 22-day-old girl with suspected TAPVC on echocardiography. Axial images from CT angiography demonstrates drainage of the left and right pulmonary veins into a large vertically oriented common vessel that extends inferiorly to drain into a dilated coronary sinus and the right atrium. Additionally, there is a persistent left superior vena cava that also drains to the coronary sinus

Supplementary file3 (MP4 1852 KB) Online Supplementary Material 3 Mixed (type 4) total anomalous pulmonary venous connection (TAPVC) in a 1-day-old boy with suspected TAPVC on echocardiography. Coronal maximum-intensity projection images from CT angiography demonstrate drainage of the right pulmonary veins via a common vein (long arrow) coursing into the left mediastinum and then vertically to connect to the innominate vein. A smaller tortuous vein (short arrows) drains a portion of the left lower lobe, traversing the mediastinum before extending vertically in the right mediastinum and connecting separately to the innominate vein. An additional left lower pulmonary vein (medium arrows) extends inferiorly, coursing below the diaphragm and into the portal venous system

Supplementary file4 (MP4 1656 KB) Online Supplementary Material 4 Left upper lobe partial anomalous pulmonary venous connection (PAPVC) in a 4-year-old boy with lymphadenopathy and fever of unknown origin. Axial contrast-enhanced chest CT demonstrates drainage of two left upper lobe pulmonary veins into a vertically oriented anomalous vein (arrow) along the left superior mediastinum, eventually connecting to the left brachiocephalic vein. Note the lack of vascular structures anterior to the left mainstem bronchus, helping differentiate the vertical vein from a persistent left superior vena cava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romberg, E.K., Stanescu, A.L., Bhutta, S.T. et al. Computed tomography of pulmonary veins: review of congenital and acquired pathologies. Pediatr Radiol 52, 2510–2528 (2022). https://doi.org/10.1007/s00247-021-05208-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05208-3

Keywords

Navigation