Skip to main content
Log in

Pediatric craniosynostosis computed tomography: an institutional experience in reducing radiation dose while maintaining diagnostic image quality

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Children with craniosynostosis may undergo multiple computed tomography (CT) examinations for diagnosis and post-treatment follow-up, resulting in cumulative radiation exposure.

Objective

To reduce the risks associated with radiation exposure, we evaluated the compliance, radiation dose reduction and clinical image quality of a lower-dose CT protocol for pediatric craniosynostosis implemented at our institution.

Materials and methods

The standard of care at our institution was modified to replace pediatric head CT protocols with a lower-dose CT protocol utilizing 100 kV, 5 mAs and iterative reconstruction. Study-ordered, protocol-utilized and radiation-dose indices were collected for studies performed with routine pediatric brain protocols (n=22) and with the lower-dose CT protocol (n=135). Two pediatric neuroradiologists evaluated image quality in a subset (n=50) of the lower-dose CT studies by scoring visualization of cranial structures, confidence of diagnosis and the need for more radiation dose.

Results

During the 30-month period, the lower-dose CT protocol had high compliance, with 2/137 studies performed with routine brain protocols. With the lower-dose CT protocol, volume CT dose index (CTDIvol) was 1.1 mGy for all patients (0–9 years old) and effective dose ranged from 0.06 to 0.22 mSv, comparable to a 4-view skull radiography examination. CTDIvol was reduced by 98% and effective dose was reduced up to 67-fold. Confidence in diagnosing craniosynostosis was high and more radiation dose was considered unnecessary in all studies (n=50) by both radiologists.

Conclusion

Replacing the routine pediatric brain CT protocol with a lower-dose CT craniosynostosis protocol substantially reduced radiation exposure without compromising image quality or diagnostic confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Governale LS (2015) Craniosynostosis. Pediatr Neurol 53:394–401

    Article  PubMed  Google Scholar 

  2. Neverauskiene A, Maciusovic M, Burkanas M et al (2018) Image based simulation of the low dose computed tomography images suggests 13 mAs 120 kV suitability for non-syndromic craniosynostosis diagnosis without iterative reconstruction algorithms. Eur J Radiol 105:168–174

    Article  PubMed  Google Scholar 

  3. Di Rocco F, Arnaud E, Renier D (2009) Evolution in the frequency of nonsyndromic craniosynostosis. J Neurosurg Pediatr 4:21–25

    Article  PubMed  Google Scholar 

  4. Badve CA, Mallikarjunappa MK, Iyer RS et al (2013) Craniosynostosis: imaging review and primer on computed tomography. Pediatr Radiol 43:728–742

    Article  PubMed  Google Scholar 

  5. Panchal J, Uttchin V (2003) Management of craniosynostosis. Plast Reconstr Surg 111:2032–2048

    Article  PubMed  Google Scholar 

  6. Rozovsky K, Udjus K, Wilson N et al (2016) Cranial ultrasound as a first-line imaging examination for craniosynostosis. Pediatrics 137:e20152230

    Article  PubMed  Google Scholar 

  7. Kuusela L, Hukki A, Brandstack N et al (2018) Use of black-bone MRI in the diagnosis of the patients with posterior plagiocephaly. Childs Nerv Syst 34:1383–1389

    Article  PubMed  Google Scholar 

  8. Patel KB, Eldeniz C, Skolnick GB et al (2020) 3D pediatric cranial bone imaging using high-resolution MRI for visualizing cranial sutures: a pilot study. J Neurosurg Pediatr 12:1–7

    Google Scholar 

  9. Branson HM, Shroff MM (2011) Craniosynostosis and 3-dimensional computed tomography. Semin Ultrasound CT MR 32:569–577

    Article  PubMed  Google Scholar 

  10. Ursitti F, Fadda T, Papetti L et al (2011) Evaluation and management of nonsyndromic craniosynostosis. Acta Paediatr 100:1185–1194

    Article  CAS  PubMed  Google Scholar 

  11. National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. National Academies Press, Washington, DC

    Google Scholar 

  12. Frush DP, Donnelly LF, Rosen NS (2003) Computed tomography and radiation risks: what pediatric health care providers should know. Pediatrics 112:951–957

    Article  PubMed  Google Scholar 

  13. Strauss KJ, Goske MJ, Kaste SC et al (2010) Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. AJR Am J Roentgenol 194:868–873

    Article  PubMed  Google Scholar 

  14. Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mathews JD, Forsythe AV, Brady Z et al (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yu L, Liu X, Leng S et al (2009) Radiation dose reduction in computed tomography: techniques and future perspective. Imaging Med 1:65–84

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vazquez JL, Pombar MA, Pumar JM, del Campo VM (2013) Optimised low-dose multidetector CT protocol for children with cranial deformity. Eur Radiol 23:2279–2287

    Article  PubMed  Google Scholar 

  18. Kalender WA, Buchenau S, Deak P et al (2008) Technical approaches to the optimisation of CT. Phys Med 24:71–79

    Article  PubMed  Google Scholar 

  19. Dougeni E, Faulkner K, Panayiotakis G (2012) A review of patient dose and optimization methods in adult and paediatric CT scanning. Eur J Radiol 81:e665–e683

    Article  CAS  PubMed  Google Scholar 

  20. Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in x-ray CT. Phys Med 28:94–108

    Article  PubMed  Google Scholar 

  21. Lipnharski I, Carranza C, Quails N et al (2016) Optimizing dose reduction in adult head CT protocols while maintaining image quality in postmortem head scans. Med Phys 43:3397–3397

    Article  Google Scholar 

  22. Lipnharski I, Quails N, Carranza C et al (2017) Optimizing dose reduction in pediatric head CT protocols while maintaining image quality in postmortem head scans. Oral presentation at the Young Investigator Clinical Symposium of the American Association of Physicists in Medicine (AAPM) Clinical Meeting, New Orleans, 18 March 2017

  23. Lipnharski I (2017) Measuring organ doses and assessing clinical image quality for the purpose of computed tomography protocol optimization. Dissertation, University of Florida

  24. American Association of Physicists in Medicine (2008) AAPM report no. 96. The measurement, reporting, and management of radiation dose in CT. American Association of Physicists in Medicine, College Park, MD

  25. Jones DG, Shrimpton PC (1991) Survey of CT practice in the UK. Part 3: normalized organ doses calculated using Monte Carlo techniques (NRPB-R250). National Radiological Protection Board, Chilton

    Google Scholar 

  26. Khursheed A, Hillier MC, Shrimpton PC, Wall BF (2002) Influence of patient age on normalized effective doses calculated for CT examinations. Br J Radiol 75:819–830

    Article  CAS  PubMed  Google Scholar 

  27. Russell WP, Russell MR (2020) Anatomy, head and neck, coronal suture. StatPearls Publishing, Treasure Island

    Google Scholar 

  28. Cohen J (1968) Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull 70:213–220

    Article  CAS  PubMed  Google Scholar 

  29. Brindhaban A, Eze CU (2006) Estimation of radiation dose during diagnostic x-ray examinations of newborn babies and 1-year-old infants. Med Princ Pract 15:260–265

    Article  CAS  PubMed  Google Scholar 

  30. Mazonakis M, Damilakis J, Raissaki M, Gourtsoyiannis N (2004) Radiation dose and cancer risk to children undergoing skull radiography. Ped Radiol 34:624–629

    Article  Google Scholar 

  31. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263

    Article  PubMed  Google Scholar 

  32. Ernst CW, Hustaert TL, Belsack D et al (2016) Dedicated sub 0.1 mSv 3DCT using MBIR in children with suspected craniosynostosis: quality assessment. Eur Radiol 26:892–899

    Article  PubMed  Google Scholar 

  33. Jaffurs D, Denny A (2009) Diagnostic pediatric computed tomographic scans of the head: actual dosage versus estimated risk. Plast Reconstr Surg 124:1254–1260

    Article  CAS  PubMed  Google Scholar 

  34. Calandrelli R, D’Apolito G, Gaudino S et al (2014) Identification of skull base sutures and craniofacial anomalies in children with craniosynostosis: utility of multidetector CT. Radiol Med 119:694–704

    Article  PubMed  Google Scholar 

  35. Kaasalainen T, Palmu K, Lampinen A et al (2015) Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction. Pediatr Radiol 45:1544–1553

    Article  PubMed  Google Scholar 

  36. Morton RP, Reynolds RM, Ramakrishna R et al (2013) Low-dose head computed tomography in children: a single institutional experience in pediatric radiation risk reduction. J Neurosurg Pediatr 12:406–410

    Article  PubMed  Google Scholar 

  37. Montoya JC, Eckel LJ, DeLone DR et al (2017) Low-dose CT for craniosynostosis: preserving diagnostic benefit with substantial radiation dose reduction. AJNR Am J Neuroradiol 38:672–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pickhardt PJ, Lubner MG, Kim DH et al (2012) Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. AJR Am J Roentgenol 199:1266–1274

    Article  PubMed  PubMed Central  Google Scholar 

  39. Katsura M, Matsuda I, Akahane M et al (2012) Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 22:1613–1623

    Article  PubMed  Google Scholar 

  40. Miéville FA, Berteloot L, Grandjean A et al (2013) Model-based iterative reconstruction in pediatric chest CT: assessment of image quality in a prospective study of children with cystic fibrosis. Pediatr Radiol 43:558–567

    Article  PubMed  Google Scholar 

  41. Deák Z, Grimm JM, Treitl M (2013) Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: an experimental clinical study. Radiology 266:197–206

    Article  PubMed  Google Scholar 

  42. Smith EA, Dillman JR, Goodsitt MM et al (2014) Model-based iterative reconstruction: effect on patient radiation dose and image quality in pediatric body CT. Radiology 270:526–534

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gervaise A, Osemont B, Lecocq S et al (2012) CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22:295–301

    Article  PubMed  Google Scholar 

  44. Singh S, Kalra MK, Hsieh J et al (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257:373–383

    Article  PubMed  Google Scholar 

  45. Eley KA, Thomas GPL, Sheerin F et al (2016) The significance of squamosal suture synostosis. J Craniofac Surg 27:1543–1549

    Article  PubMed  Google Scholar 

  46. Raju NS, Ishwar P, Banerjee R (2017) Role of multislice computed tomography and three-dimensional rendering in the evaluation of maxillofacial injuries. J Oral Maxillofac Radiol 5:67–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabella L. Barreto.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreto, I.L., Tuna, I.S., Rajderkar, D.A. et al. Pediatric craniosynostosis computed tomography: an institutional experience in reducing radiation dose while maintaining diagnostic image quality. Pediatr Radiol 52, 85–96 (2022). https://doi.org/10.1007/s00247-021-05205-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05205-6

Keywords

Navigation