Skip to main content

Advertisement

Log in

Contrast-enhanced ultrasound of the pediatric brain

  • Contrast-enhanced ultrasound (CEUS) in children
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Brain contrast-enhanced ultrasound (CEUS) is an emerging application that can complement gray-scale US and yield additional insights into cerebral flow dynamics. CEUS uses intravenous injection of ultrasound contrast agents (UCAs) to highlight tissue perfusion and thus more clearly delineate cerebral pathologies including stroke, hypoxic–ischemic injury and focal lesions such as tumors and vascular malformations. It can be applied not only in infants with open fontanelles but also in older children and adults via a transtemporal window or surgically created acoustic window. Advancements in CEUS technology and post-processing methods for quantitative analysis of UCA kinetics further elucidate cerebral microcirculation. In this review article we discuss the CEUS examination protocol for brain imaging in children, current clinical applications and future directions for research and clinical uses of brain CEUS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hwang M (2018) Introduction to contrast-enhanced ultrasound of the brain in neonates and infants: current understanding and future potential. Pediatr Radiol 49:254–262

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vinke EJ, Kortenbout AJ, Eyding J et al (2017) Potential of contrast-enhanced ultrasound as a bedside monitoring technique in cerebral perfusion: a systematic review. Ultrasound Med Biol 43:2751–2757

    Article  PubMed  Google Scholar 

  3. Archer LN, Levene MI, Evans DH (1986) Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia. Lancet 2:1116–1118

    Article  CAS  PubMed  Google Scholar 

  4. Hwang M, Sridharan A, Darge K et al (2019) Novel quantitative contrast-enhanced ultrasound detection of hypoxic ischemic injury in neonates and infants: pilot study 1. J Ultrasound Med 38:2025–2038

    Article  PubMed  Google Scholar 

  5. Prada F, Bene MD, Fornaro R et al (2016) Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. Neurosurg Focus 40:E7

    Article  PubMed  Google Scholar 

  6. Kern R, Diels A, Pettenpohl J et al (2011) Real-time ultrasound brain perfusion imaging with analysis of microbubble replenishment in acute MCA stroke. J Cereb Blood Flow Metab 31:1716–1724

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meves SH, Wilkening W, Thies T et al (2002) Comparison between echo contrast agent-specific imaging modes and perfusion-weighted magnetic resonance imaging for the assessment of brain perfusion. Stroke 33:2433–2437

    Article  PubMed  Google Scholar 

  8. Puls I, Hauck K, Demuth K et al (1999) Diagnostic impact of cerebral transit time in the identification of microangiopathy in dementia: a transcranial ultrasound study. Stroke 30:2291–2295

    Article  CAS  PubMed  Google Scholar 

  9. Jungehulsing GJ, Brunecker P, Nolte CH et al (2008) Diagnostic transcranial ultrasound perfusion-imaging at 2.5 MHz does not affect the blood–brain barrier. Ultrasound Med Biol 34:147–150

    Article  PubMed  Google Scholar 

  10. Holscher T, Wilkening W, Draganski B et al (2005) Transcranial ultrasound brain perfusion assessment with a contrast agent-specific imaging mode: results of a two-center trial. Stroke 36:2283–2285

    Article  PubMed  Google Scholar 

  11. Hwang M, Riggs BJ, Katz J et al (2018) Advanced pediatric neurosonography techniques: contrast-enhanced ultrasonography, elastography, and beyond. J Neuroimaging 28:150–157

    Article  PubMed  Google Scholar 

  12. Christensen-Jeffries K, Couture O, Dayton PA et al (2020) Super-resolution ultrasound imaging. Ultrasound Med Biol 46:865–891

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Z, Katz J, Hwang M et al (2019) Cerebral vasculars super resolution imaging and blood flow measurement using ultrasound enhanced particle tracking velocimetry. 72nd annual meeting of the APS division of fluid dynamics, Seattle

    Google Scholar 

  14. Prada F, Perin A, Martegani A et al (2014) Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 74:542–552

    Article  PubMed  Google Scholar 

  15. Knieling F, Ruffer A, Cesnjevar R et al (2020) Transfontanellar contrast-enhanced ultrasound for monitoring brain perfusion during neonatal heart surgery. Circ Cardiovasc Imaging 13:e010073

    Article  PubMed  Google Scholar 

  16. Hwang M, Riggs BJ, Saade-Lemus S et al (2018) Bedside contrast-enhanced ultrasound diagnosing cessation of cerebral circulation in a neonate: a novel bedside diagnostic tool. Neuroradiol J 31:578–580

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kramer MR, Bhagat N, Back SJ et al (2018) Influence of contrast-enhanced ultrasound administration setups on microbubble enhancement: a focus on pediatric applications. Pediatr Radiol 48:101–108

    Article  PubMed  Google Scholar 

  18. Eisenbrey JR, Daecher A, Kramer MR et al (2015) Effects of needle and catheter size on commercially available ultrasound contrast agents. J Ultrasound Med 34:1961–1968

    Article  PubMed  Google Scholar 

  19. Tang MX, Mulvana H, Gauthier T et al (2011) Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus 1:520–539

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vinke EJ, Eyding J, de Korte CL et al (2017) Repeatability of bolus kinetics ultrasound perfusion imaging for the quantification of cerebral blood flow. Ultrasound Med Biol 43:2758–2764

    Article  PubMed  Google Scholar 

  21. Pitre-Champagnat S, Coiffier B, Jourdain L et al (2017) Toward a standardization of ultrasound scanners for dynamic contrast-enhanced ultrasonography: methodology and phantoms. Ultrasound Med Biol 43:2670–2677

    Article  PubMed  Google Scholar 

  22. Gauthier TP, Chebil M, Peronneau P et al (2012) In vitro evaluation of the impact of ultrasound scanner settings and contrast bolus volume on time-intensity curves. Ultrasonics 52:12–19

    Article  CAS  PubMed  Google Scholar 

  23. Meairs S (2008) Contrast-enhanced ultrasound perfusion imaging in acute stroke patients. Eur Neurol 59:17–26

    Article  PubMed  Google Scholar 

  24. Shen C, Xu J, Fang NX et al (2014) Anisotropic complementary acoustic metamaterial for canceling out aberrating layers. Phys Rev X 4:041033

    Google Scholar 

  25. Prada F, Del Bene M, Casali C et al (2015) Intraoperative navigated angiosonography for skull base tumor surgery. World Neurosurg 84:1699–1707

    Article  PubMed  Google Scholar 

  26. Prada F, Del Bene M, Saini M et al (2015) Intraoperative cerebral angiosonography with ultrasound contrast agents: how I do it. Acta Neurochir 157:1025–1029

    Article  PubMed  Google Scholar 

  27. Kearns KN, Sokolowski JD, Chadwell K et al (2019) The role of contrast-enhanced ultrasound in neurosurgical disease. Neurosurg Focus 47:E8

    Article  PubMed  Google Scholar 

  28. Krix M (2008) Time intensity curves. In: Baert AL (ed) Encyclopedia of diagnostic imaging. Springer, Berlin

    Google Scholar 

  29. Peronneau P, Lassau N, Leguerney I et al (2010) Contrast ultrasonography: necessity of linear data processing for the quantification of tumor vascularization. Ultraschall Med 31:370–378

    Article  CAS  PubMed  Google Scholar 

  30. Gauthier M, Leguerney I, Thalmensi J et al (2011) Estimation of intra-operator variability in perfusion parameter measurements using DCE-US. World J Radiol 3:70–81

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pitre-Champagnat S, Leguerney I, Bosq J et al (2015) Dynamic contrast-enhanced ultrasound parametric maps to evaluate intratumoral vascularization. Investig Radiol 50:212–217

    Article  Google Scholar 

  32. Miller DL, Averkiou MA, Brayman AA et al (2008) Bioeffects considerations for diagnostic ultrasound contrast agents. J Ultrasound Med 27:611–632

    Article  PubMed  Google Scholar 

  33. Morse SV, Pouliopoulos AN, Chan TG et al (2019) Rapid short-pulse ultrasound delivers drugs uniformly across the murine blood–brain barrier with negligible disruption. Radiology 291:459–466

    Article  PubMed  Google Scholar 

  34. Kurinczuk JJ, White-Koning M, Badawi N (2010) Epidemiology of neonatal encephalopathy and hypoxic–ischaemic encephalopathy. Early Hum Dev 86:329–338

    Article  PubMed  Google Scholar 

  35. Hickey RW, Painter MJ (2006) Brain injury from cardiac arrest in children. Neurol Clin 24:147–158

    Article  PubMed  Google Scholar 

  36. Kirschen MP, Topjian AA, Berg RA (2016) Neurologic outcome after cardiac arrest: what you see at hospital discharge may or may not be what you get. Resuscitation 102:A1–A2

    Article  PubMed  Google Scholar 

  37. Sorokan ST, Jefferies AL, Miller SP (2018) Imaging the term neonatal brain. Paediatr Child Health 23:322–328

    Article  PubMed  PubMed Central  Google Scholar 

  38. Intrapiromkul J, Northington F, Huisman TA et al (2013) Accuracy of head ultrasound for the detection of intracranial hemorrhage in preterm neonates: comparison with brain MRI and susceptibility weighted imaging. J Neuroradiol 40:81–88

    Article  PubMed  Google Scholar 

  39. Huang BY, Castillo M (2008) Hypoxic–ischemic brain injury: imaging findings from birth to adulthood. Radiographics 28:417–439

    Article  PubMed  Google Scholar 

  40. Hagmann P, Jonasson L, Maeder P et al (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26:205–223

    Article  Google Scholar 

  41. Lally PJ, Montaldo P, Oliveira V et al (2019) Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study. Lancet Neurol 18:35–45

    Article  PubMed  PubMed Central  Google Scholar 

  42. De Vis JB, Hendrikse J, Petersen ET et al (2015) Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic–ischemic encephalopathy. Eur Radiol 25:113–121

    Article  PubMed  Google Scholar 

  43. Massaro AN, Evangelou I, Fatemi A et al (2015) White matter tract integrity and developmental outcome in newborn infants with hypoxic–ischemic encephalopathy treated with hypothermia. Dev Med Child Neurol 57:441–448

    Article  PubMed  Google Scholar 

  44. Haller S, Zaharchuk G, Thomas DL et al (2016) Arterial spin labeling perfusion of the brain: emerging clinical applications. Radiology 281:337–356

    Article  PubMed  Google Scholar 

  45. Ouyang MH, Liu PY, Jeon T et al (2017) Heterogeneous increases of regional cerebral blood flow during preterm brain development: preliminary assessment with pseudo-continuous arterial spin labeled perfusion MRI. Neuroimage 147:233–242

    Article  PubMed  Google Scholar 

  46. Wong EC (2014) An introduction to ASL labeling techniques. J Magn Reson Imaging 40:1–10

    Article  PubMed  Google Scholar 

  47. Proisy M, Mitra S, Uria-Avellana C et al (2016) Brain perfusion imaging in neonates: an overview. AJNR Am J Neuroradiol 37:1766–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Busl KM, Greer DM (2010) Hypoxic–ischemic brain injury: pathophysiology, neuropathology and mechanisms. NeuroRehabilitation 26:5–13

    Article  PubMed  Google Scholar 

  49. Zheng Q, Ouyang M, Martin-Saavedra JS et al (2019) Increased brain perfusion in neonatal hypoxic ischemic injury with negative reading of DWI, T1/T2-weighted images: implications of perfusion MRI for reperfusion response monitoring and prognostication. ISMRM, Montreal

    Google Scholar 

  50. Wintermark P, Hansen A, Gregas MC et al (2011) Brain perfusion in asphyxiated newborns treated with therapeutic hypothermia. AJNR Am J Neuroradiol 32:2023–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khaw K, Sridharan A, Poznick L et al (2020) Evaluating the correlation between bolus perfusion kinetics using contrast-enhanced ultrasound and intracranial pressure in a pediatric porcine model of asphyxia-associated cardiac arrest. Society for Pediatric Radiology Annual Meeting & Postgraduate Course, Miami

  52. Mavroudis CD, Karlsson M, Ko T et al (2018) Cerebral mitochondrial dysfunction associated with deep hypothermic circulatory arrest in neonatal swine. Eur J Cardiothorac Surg 54:162–168

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee JK, Brady KM, Chung SE et al (2014) A pilot study of cerebrovascular reactivity autoregulation after pediatric cardiac arrest. Resuscitation 85:1387–1393

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sekhon MS, Ainslie PN, Griesdale DE (2017) Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care 21:90

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kushwah S, Kumar A, Verma A et al (2017) Comparison of fractional anisotropy and apparent diffusion coefficient among hypoxic ischemic encephalopathy stages 1, 2, and 3 and with nonasphyxiated newborns in 18 areas of brain. Indian J Radiol Imaging 27:447–456

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lemmon ME, Wagner MW, Bosemani T et al (2017) Diffusion tensor imaging detects occult cerebellar injury in severe neonatal hypoxic-ischemic encephalopathy. Dev Neurosci 39:207–214

    Article  CAS  PubMed  Google Scholar 

  57. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  PubMed  Google Scholar 

  58. Reller MD, Strickland MJ, Riehle-Colarusso T et al (2008) Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. J Pediatr 153:807–813

    Article  PubMed  PubMed Central  Google Scholar 

  59. Centers for Disease Control and Prevention (2019) Data and statistics on congenital heart defects. CDC website. https://www.cdc.gov/ncbddd/heartdefects/data.html. Accessed 9 Dec 2020

  60. Centers for Disease Control and Prevention (2010) Morbidity and mortality weekly report: racial differences by gestational age in neonatal deaths attributable to congenital heart defects — United States, 2003–2006. CDC website. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5937a3.htm?s_cid=mm5937a3_w. Accessed 9 Dec 2020

  61. Licht DJ, Shera DM, Clancy RR et al (2009) Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 137:529–536

    Article  PubMed  PubMed Central  Google Scholar 

  62. Best KE, Rankin J (2016) Long-term survival of individuals born with congenital heart disease: a systematic review and meta-analysis. J Am Heart Assoc 5:e002846

    Article  PubMed  PubMed Central  Google Scholar 

  63. McQuillen PS, Barkovich AJ, Hamrick SE et al (2007) Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke 38:736–741

    Article  PubMed  Google Scholar 

  64. Newburger JW, Bellinger DC (2006) Brain injury in congenital heart disease. Circulation 113:183–185

    Article  PubMed  Google Scholar 

  65. Dent CL, Spaeth JP, Jones BV et al (2005) Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg 130:1523–1530

    Article  PubMed  Google Scholar 

  66. Mahle WT, Tavani F, Zimmerman RA et al (2002) An MRI study of neurological injury before and after congenital heart surgery. Circulation 106:I109–I114

    Article  PubMed  Google Scholar 

  67. Lorusso R, Taccone FS, Belliato M et al (2017) Brain monitoring in adult and pediatric ECMO patients: the importance of early and late assessments. Minerva Anestesiol 83:1061–1074

    Article  PubMed  Google Scholar 

  68. Licht DJ, Wang J, Silvestre DW et al (2004) Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. J Thorac Cardiovasc Surg 128:841–849

    Article  PubMed  Google Scholar 

  69. Zaleski KL, Kussman BD (2020) Near-infrared spectroscopy in pediatric congenital heart disease. J Cardiothorac Vasc Anesth 34:489–500

    Article  CAS  PubMed  Google Scholar 

  70. Simons J, Sood ED, Derby CD et al (2012) Predictive value of near-infrared spectroscopy on neurodevelopmental outcome after surgery for congenital heart disease in infancy. J Thorac Cardiovasc Surg 143:118–125

    Article  PubMed  Google Scholar 

  71. Khan MS, Fraser CD (2012) Neonatal brain protection in cardiac surgery and the role of intraoperative neuromonitoring. World J Pediatr Congenit Heart Surg 3:114–119

    Article  PubMed  Google Scholar 

  72. Hovels-Gurich HH (2016) Factors influencing neurodevelopment after cardiac surgery during infancy. Front Pediatr 4:137

    Article  PubMed  PubMed Central  Google Scholar 

  73. Spaeder MC, Klugman D, Skurow-Todd K et al (2017) Perioperative near-infrared spectroscopy monitoring in neonates with congenital heart disease: relationship of cerebral tissue oxygenation index variability with neurodevelopmental outcome. Pediatr Crit Care Med 18:213–218

    Article  PubMed  Google Scholar 

  74. Andropoulos DB, Stayer SA, Diaz LK et al (2004) Neurological monitoring for congenital heart surgery. Anesth Analg 99:1365–1375

    Article  PubMed  Google Scholar 

  75. Earley CJ, Kittner SJ, Feeser BR et al (1998) Stroke in children and sickle-cell disease: Baltimore-Washington cooperative young stroke study. Neurology 51:169–176

    Article  CAS  PubMed  Google Scholar 

  76. Chung B, Wong V (2004) Pediatric stroke among Hong Kong Chinese subjects. Pediatrics 114:e206–e212

    Article  PubMed  Google Scholar 

  77. Schoenberg BS, Mellinger JF, Schoenberg DG (1978) Cerebrovascular disease in infants and children: a study of incidence, clinical features, and survival. Neurology 28:763–768

    Article  CAS  PubMed  Google Scholar 

  78. Lynch JK, Hirtz DG, DeVeber G et al (2002) Report of the National Institute of Neurological Disorders and Stroke workshop on perinatal and childhood stroke. Pediatrics 109:116–123

    Article  PubMed  Google Scholar 

  79. Lanthier S, Carmant L, David M et al (2000) Stroke in children: the coexistence of multiple risk factors predicts poor outcome. Neurology 54:371–378

    Article  CAS  PubMed  Google Scholar 

  80. deVeber GA, MacGregor D, Curtis R et al (2000) Neurologic outcome in survivors of childhood arterial ischemic stroke and sinovenous thrombosis. J Child Neurol 15:316–324

    Article  CAS  PubMed  Google Scholar 

  81. Ellis C, McGrattan K, Mauldin P, Ovbiagele B (2014) Costs of pediatric stroke care in the United States: a systematic and contemporary review. Expert Rev Pharmacoecon Outcomes Res 14:643–650

    Article  PubMed  Google Scholar 

  82. Wiesmann M, Meyer K, Albers T et al (2004) Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke. Stroke 35:508–513

    Article  PubMed  Google Scholar 

  83. Keedy AW, Fischette WS, Soares BP et al (2012) Contrast delay on perfusion CT as a predictor of new, incident infarct: a retrospective cohort study. Stroke 43:1295–1301

    Article  PubMed  Google Scholar 

  84. Ostrom QT, de Blank PM, Kruchko C et al (2015) Alex's Lemonade Stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16:x1–x36

  85. Sahu RK, Das KK, Bhaisora KS et al (2015) Pediatric intramedullary spinal cord lesions: pathological spectrum and outcome of surgery. J Pediatr Neurosci 10:214–221

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kanno H, Ozawa Y, Sakata K et al (2005) Intraoperative power Doppler ultrasonography with a contrast-enhancing agent for intracranial tumors. J Neurosurg 102:295–301

    Article  PubMed  Google Scholar 

  87. Sidhu PS, Cantisani V, Dietrich CF et al (2018) The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (short version). Ultraschall Med 39:154–180

    Article  PubMed  Google Scholar 

  88. Vetrano IG, Prada F, Nataloni IF et al (2015) Discrete or diffuse intramedullary tumor? Contrast-enhanced intraoperative ultrasound in a case of intramedullary cervicothoracic hemangioblastomas mimicking a diffuse infiltrative glioma: technical note and case report. Neurosurg Focus 39:E17

    Article  PubMed  Google Scholar 

  89. Holscher T, Ozgur B, Singel S et al (2007) Intraoperative ultrasound using phase inversion harmonic imaging: first experiences. Neurosurgery 60:382–386

    PubMed  Google Scholar 

  90. Engelhardt M, Hansen C, Eyding J et al (2007) Feasibility of contrast-enhanced sonography during resection of cerebral tumours: initial results of a prospective study. Ultrasound Med Biol 33:571–575

    Article  PubMed  Google Scholar 

  91. He W, Jiang XQ, Wang S et al (2008) Intraoperative contrast-enhanced ultrasound for brain tumors. Clin Imaging 32:419–424

    Article  PubMed  Google Scholar 

  92. Mattei L, Prada F, Legnani FG et al (2016) Neurosurgical tools to extend tumor resection in hemispheric low-grade gliomas: conventional and contrast enhanced ultrasonography. Childs Nerv Syst 32:1907–1914

    Article  PubMed  Google Scholar 

  93. Prada F, Mattei L, Del Bene M et al (2014) Intraoperative cerebral glioma characterization with contrast enhanced ultrasound. Biomed Res Int 2014:484261

    Article  PubMed  PubMed Central  Google Scholar 

  94. Vetrano IG, Prada F, Erbetta A, DiMeco F (2015) Intraoperative ultrasound and contrast-enhanced ultrasound (CEUS) features in a case of intradural extramedullary dorsal schwannoma mimicking an intramedullary lesion. Ultraschall Med 36:307–310

    Article  Google Scholar 

  95. Prada F, Vitale V, Del Bene M et al (2017) Contrast-enhanced MR imaging versus contrast-enhanced US: a comparison in glioblastoma surgery by using intraoperative fusion imaging. Radiology 285:242–249

    Article  PubMed  Google Scholar 

  96. Cheng LG, He W, Zhang HX et al (2016) Intraoperative contrast enhanced ultrasound evaluates the grade of glioma. Biomed Res Int 2016:2643862

    Article  PubMed  PubMed Central  Google Scholar 

  97. Aaberg KM, Gunnes N, Bakken IJ et al (2017) Incidence and prevalence of childhood epilepsy: a nationwide cohort study. Pediatrics 139:e20163908

    Article  PubMed  Google Scholar 

  98. Camfield P, Camfield C (2015) Incidence, prevalence and aetiology of seizures and epilepsy in children. Epileptic Disord 17:117–123

    Article  PubMed  Google Scholar 

  99. Fisher RS, van Emde BW, Blume W et al (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472

  100. Beghi E (2016) Addressing the burden of epilepsy: many unmet needs. Pharmacol Res 107:79–84

    Article  PubMed  Google Scholar 

  101. Hamandi K, Beniczky S, Diehl B et al (2017) Current practice and recommendations in UK epilepsy monitoring units. Report of a national survey and workshop. Seizure 50:92–98

    Article  PubMed  Google Scholar 

  102. Plummer C, Harvey AS, Cook M (2008) EEG source localization in focal epilepsy: where are we now? Epilepsia 49:201–218

    Article  PubMed  Google Scholar 

  103. Tewolde S, Oommen K, Lie DY et al (2015) Epileptic seizure detection and prediction based on continuous cerebral blood flow monitoring — a review. J Healthc Eng 6:159–178

    Article  PubMed  Google Scholar 

  104. Jeppesen J, Beniczky S, Johansen P et al (2015) Exploring the capability of wireless near infrared spectroscopy as a portable seizure detection device for epilepsy patients. Seizure 26:43–48

    Article  PubMed  Google Scholar 

  105. Leeman-Markowski B (2016) Review of MRI-negative epilepsy. JAMA Neurol 73:1377

    Article  Google Scholar 

  106. Kim S, Mountz JM (2011) SPECT imaging of epilepsy: an overview and comparison with F-18 FDG PET. Int J Mol Imaging 2011:813028

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tringali G, Bono B, Dones I et al (2018) Multimodal approach for radical excision of focal cortical dysplasia by combining advanced magnetic resonance imaging data to intraoperative ultrasound, electrocorticography, and cortical stimulation: a preliminary experience. World Neurosurg 113:e738–e746

    Article  PubMed  Google Scholar 

  108. Humphreys RP, Hendrick EB, Hoffman HJ (1972) Cerebrovascular disease in children. Can Med Assoc J 107:774–776

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Vanaman MJ, Hervey-Jumper SL, Maher CO (2010) Pediatric and inherited neurovascular diseases. Neurosurg Clin N Am 21:427–441

    Article  PubMed  Google Scholar 

  110. Ladner TR, Mahdi J, Attia A et al (2015) A multispecialty pediatric neurovascular conference: a model for interdisciplinary management of complex disease. Pediatr Neurol 52:165–173

    Article  PubMed  Google Scholar 

  111. Banker BQ (1961) Cerebral vascular disease in infancy and childhood. 1. Occlusive vascular diseases. J Neuropathol Exp Neurol 20:127–140

    Article  CAS  PubMed  Google Scholar 

  112. Scott RM, Smith ER (2009) Moyamoya disease and moyamoya syndrome. N Engl J Med 360:1226–1237

    Article  CAS  PubMed  Google Scholar 

  113. Acerbi F, Prada F, Vetrano IG et al (2019) Indocyanine green and contrast-enhanced ultrasound videoangiography: a synergistic approach for real-time verification of distal revascularization and aneurysm occlusion in a complex distal middle cerebral artery aneurysm. World Neurosurg 125:277–284

    Article  PubMed  Google Scholar 

  114. Prada F, Del Bene M, Mauri G et al (2018) Dynamic assessment of venous anatomy and function in neurosurgery with real-time intraoperative multimodal ultrasound: technical note. Neurosurg Focus 45:E6

    Article  PubMed  Google Scholar 

  115. Espagnet MCR, Bernardi B, Pasquini L et al (2017) Erratum to: signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol 47:1366

    Article  PubMed  Google Scholar 

  116. Du J, Li FH, Fang H et al (2008) Microvascular architecture of breast lesions: evaluation with contrast-enhanced ultrasonographic micro flow imaging. J Ultrasound Med 27:833–842

    Article  PubMed  Google Scholar 

  117. Linden RA, Trabulsi EJ, Forsberg F et al (2007) Contrast enhanced ultrasound flash replenishment method for directed prostate biopsies. J Urol 178:2354–2358

    Article  PubMed  Google Scholar 

  118. Sugimoto K, Moriyasu F, Kamiyama N et al (2008) Analysis of morphological vascular changes of hepatocellular carcinoma by microflow imaging using contrast-enhanced sonography. Hepatol Res 38:790–799

    Article  PubMed  Google Scholar 

  119. Wilson SR, Jang HJ, Kim TK et al (2008) Real-time temporal maximum-intensity-projection imaging of hepatic lesions with contrast-enhanced sonography. AJR Am J Roentgenol 190:691–695

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misun Hwang.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, M., Barnewolt, C.E., Jüngert, J. et al. Contrast-enhanced ultrasound of the pediatric brain. Pediatr Radiol 51, 2270–2283 (2021). https://doi.org/10.1007/s00247-021-04974-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-04974-4

Keywords

Navigation