Skip to main content

Advertisement

Log in

MR differential diagnosis of acute deep grey matter pathology in paediatric patients

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

An Erratum to this article was published on 29 March 2013

Abstract

A high metabolic demand, rich vascularization and high concentrations of ionic elements leading to the generation of oxygen free radicals, give to the deep grey matter (DGM) nuclei specific susceptibility to both acute and chronic insults, especially in paediatric patients. Reaching a diagnosis in the early stages of acute diseases in many patients is crucial for instigating prompt specific therapy leading to a favourable outcome. On the basis of a review of a 10-year in-house database and a review of the literature on CNS pathology involving the DGM nuclei in paediatric patients, we summarize the MR findings and clinical clues that may help the radiologist in the difficult differential diagnosis process. The terms “acute” and “chronic” refer to the clinical onset of the disease. MR imaging allows the detection of an injury, determination of its precise anatomical location and characterization of the signal changes. This, combined with a knowledge of specific MRI patterns, may be a roadmap to a definite diagnosis. Clinical history, physical and laboratory findings, timing of the MR examination and advanced MR imaging techniques (diffusion-weighted imaging and 1H-MR spectroscopy), are crucial in some patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. De Long MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  Google Scholar 

  2. Abbruzzese G, Berardelli A (2003) Sensorimotor integration in movement disorders. Mov Disord 18:231–240

    Article  PubMed  Google Scholar 

  3. McQuillen PS, Ferriero DM (2004) Selective vulnerability in the developing central nervous system. Pediatr Neurol 30:227–235

    Article  PubMed  Google Scholar 

  4. Huang BY, Castillo M (2008) Hypoxic-ischemic brain injury: imaging findings from birth to adulthood. Radiographics 28:417–439

    Article  PubMed  Google Scholar 

  5. Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351:1985–1995

    Article  PubMed  CAS  Google Scholar 

  6. Barkovich AJ, Westmark K, Partridge C et al (1995) Perinatal asphyxia: MR findings in the first 10 days. AJNR 16:427–438

    PubMed  CAS  Google Scholar 

  7. Penrice J, Cady EB, Lorek A et al (1996) Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res 40:6–14

    Article  PubMed  CAS  Google Scholar 

  8. Grant PE, Yu D (2006) Acute injury to the immature brain with hypoxia with or without hypoperfusion. Radiol Clin North Am 44:63–77

    Article  PubMed  Google Scholar 

  9. Sébire G, Tabarki B, Saunders DE et al (2005) Cerebral venous sinus thrombosis in children: risk factors, presentation, diagnosis and outcome. Brain 128:477–489

    Article  PubMed  Google Scholar 

  10. Bartynski WS, Boardman JF (2007) Distinct imaging patterns and lesion distribution in posterior reversible encephalopathy syndrome. AJNR 28:1320–1327

    Article  PubMed  CAS  Google Scholar 

  11. Van Der Knaap MS, Valk J, Barkhof F (2005) Magnetic resonance of myelination and myelin disorders, 3rd edn. Springer, Berlin

    Google Scholar 

  12. Lee HF, Tsai CR, Chi CS et al (2009) Leigh syndrome: clinical and neuroimaging follow-up. Pediatr Neurol 40(2):88–93

    Article  PubMed  Google Scholar 

  13. Johnson JA, Le KL, Palacios E (2009) Propionic acidemia: case report and review of neurologic sequelae. Pediatr Neurol 40(4):317–320

    Article  PubMed  Google Scholar 

  14. Michel SJ, Given CA 2nd, Robertson WC Jr (2004) Imaging of the brain, including diffusion-weighted imaging in methylmalonic acidemia. Pediatr Radiol 34:580–582

    Article  PubMed  Google Scholar 

  15. Harting I, Neumaier-Probst E, Seitz A et al (2009) Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain 132:1764–1782

    Article  PubMed  Google Scholar 

  16. Jan W, Zimmerman RA, Wang ZJ et al (2003) MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology 45(6):393–399

    Article  PubMed  Google Scholar 

  17. Vasconcelos MM, Silva KP, Vidal G et al (1999) Early diagnosis of pediatric Wernicke’s encephalopathy. Pediatr Neurol 20:289–294

    Article  PubMed  CAS  Google Scholar 

  18. Zuccoli G, Siddiqui N, Bailey A et al (2010) Neuroimaging findings in pediatric Wernicke encephalopathy: a review. Neuroradiology 52:523–529

    Article  PubMed  Google Scholar 

  19. Wilson RK, Kuncl RW, Corse AM (2006) Wernicke’s encephalopathy: beyond alcoholism. Nat Clin Pract Neurol 2:54–58

    Article  PubMed  Google Scholar 

  20. Burns CM, Rutherford MA, Boardman JP et al (2008) Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 122:65–74

    Article  PubMed  Google Scholar 

  21. Brown WD (2000) Osmotic demyelination disorders: central pontine and extrapontine myelinolysis. Curr Opin Neurol 13:691–697

    Article  PubMed  CAS  Google Scholar 

  22. Steinborn M, Leiz S, Rüdisser K et al (2004) CT and MRI in haemolytic uraemic syndrome with central nervous system involvement: distribution of lesions and prognostic value of imaging findings. Pediatr Radiol 34:805–810

    Article  PubMed  Google Scholar 

  23. Hopkins RO, Fearing MA, Weaver LK et al (2006) Basal ganglia lesions following carbon monoxide poisoning. Brain Inj 20:273–281

    Article  PubMed  Google Scholar 

  24. Rovira A, Alonso J, Córdoba J (2008) MR imaging findings in hepatic encephalopathy. AJNR 29:1612–1621

    Article  PubMed  CAS  Google Scholar 

  25. Mirowitz SA, Westrich TJ, Hirsch JD (1991) Hyperintense basal ganglia on T1-weighted MR images in patients receiving parenteral nutrition. Radiology 181:117–120

    PubMed  CAS  Google Scholar 

  26. Mirowitz SA, Westrich TJ (1992) Basal ganglial signal intensity alterations: reversal after discontinuation of parenteral manganese administration. Radiology 185:535–536

    PubMed  CAS  Google Scholar 

  27. Andronikou S, Wilmshurst J, Hatherill M et al (2006) Distribution of brain infarction in children with tuberculous meningitis and correlation with outcome score at 6 months. Pediatr Radiol 36:1289–1294

    Article  PubMed  Google Scholar 

  28. Kalita J, Ranjan P, Misra UK et al (2003) Hemichorea: a rare presentation of tuberculoma. J Neurol Sci 208:109–111

    Article  PubMed  CAS  Google Scholar 

  29. Saitoh S, Wada T, Narita M et al (1993) Mycoplasma pneumoniae infection may cause striatal lesions leading to acute neurologic dysfunction. Neurology 43:2150–2151

    Article  PubMed  CAS  Google Scholar 

  30. Cambonie G, Houdon L, Rivier F et al (2000) Infantile bilateral striatal necrosis following measles. Brain Dev 22:221–223

    Article  PubMed  CAS  Google Scholar 

  31. Leheup BP, Feillet F, Roland J et al (1987) Lesions of the basal ganglia in mumps. Clinical and neuroradiological development in a case. Rev Neurol (Paris) 143:301–303

    CAS  Google Scholar 

  32. Yamamoto K, Chiba HO, Ishitobi M et al (1997) Acute encephalopathy with bilateral striatal necrosis: favourable response to corticosteroid therapy. Eur J Paediatr Neurol 1:41–45

    Article  PubMed  CAS  Google Scholar 

  33. Ho VB, Fitz CR, Chuang SH et al (1993) Bilateral basal ganglia lesions: pediatric differential considerations. Radiographics 13:269–292

    PubMed  CAS  Google Scholar 

  34. Ono J, Shimizu K, Harada K et al (1998) Characteristic MR features of encephalitis caused by Epstein-Barr virus: a case report. Pediatr Radiol 28:569–570

    Article  PubMed  CAS  Google Scholar 

  35. Leber SM, Brunberg JA, Pavkovic IM (1995) Infarction of basal ganglia associated with California encephalitis virus. Pediatr Neurol 12:346–349

    Article  PubMed  CAS  Google Scholar 

  36. Mordekar S, Jaspan T, Sharrard M et al (2005) Acute bilateral striatal necrosis with rotavirus gastroenteritis and inborn metabolic predisposition. Dev Med Child Neurol 47:415–418

    Article  PubMed  Google Scholar 

  37. Toyoshima M, Maegaki Y, Yotsumata K et al (2007) Antiphospholipid syndrome associated with human herpesvirus-6 infection. Pediatr Neurol 37:449–451

    Article  PubMed  Google Scholar 

  38. Baum PA, Barkovich AJ, Koch TK et al (1994) Deep gray matter involvement in children with acute disseminated encephalomyelitis. AJNR 15:1275–1283

    PubMed  CAS  Google Scholar 

  39. Rossi A (2008) Imaging of acute disseminated encephalomyelitis. Neuroimaging Clin N Am 18:149–161

    Article  PubMed  Google Scholar 

  40. Karagulle Kendi AT, Krenzel C, Ott FW et al (2008) Poststreptococcal dystonia with bilateral striatal enlargement: MR imaging and spectroscopic findings. AJNR 29:1276–1278

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cosimo Quattrocchi.

Additional information

C.C. Quattrocchi and D. Longo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quattrocchi, C.C., Longo, D., Delfino, L.N. et al. MR differential diagnosis of acute deep grey matter pathology in paediatric patients. Pediatr Radiol 43, 743–761 (2013). https://doi.org/10.1007/s00247-012-2491-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2491-2

Keywords

Navigation