Skip to main content
Log in

Coronary imaging techniques with emphasis on CT and MRI

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Coronary artery imaging in children is challenging, with high demands both on temporal and spatial resolution due to high heart rates and smaller anatomy. Although invasive conventional coronary angiography remains the benchmark technique, over the past 10 years, CT and MRI have emerged in the field of coronary imaging. The choice of hardware is important. For CT, the minimum requirement is a 64-channel scanner. The temporal resolution of the scanner is most important for optimising image quality and minimising radiation dose. Manufacturers have developed several modes of electrocardiographic (ECG) triggering to facilitate dose reduction. Recent technical advances have opened new possibilities in MRI coronary imaging. As a non-ionising radiation technique, MRI is of great interest in paediatric imaging. It is currently recommended in centres with appropriate expertise for the screening of patients with suspected congenital coronary anomalies. However, MRI is still not feasible in infants. This review describes and discusses the technical requirements and the pros and cons of all three techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Piers LH, Dikkers R, Willems TP et al (2008) Computed tomographic angiography or conventional coronary angiography in therapeutic decision-making. Eur Heart J 29:2902–2907

    Article  PubMed  Google Scholar 

  2. Bluemke DA, Achenbach S, Budoff M et al (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the american heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 118:586–606

    Article  PubMed  Google Scholar 

  3. Berdjis F, Mahon DJ (2000) Modified Judkins catheters for selective coronary angiography in infants and young children. Catheter Cardiovasc Interv 51:175–181

    Article  PubMed  CAS  Google Scholar 

  4. Bacher K, Bogaert E, Lapere R et al (2005) Patient-specific dose and radiation risk estimation in pediatric cardiac catheterization. Circulation 111:83–89

    Article  PubMed  Google Scholar 

  5. Chida K, Inaba Y, Saito H et al (2009) Radiation dose of interventional radiology system using a flat-panel detector. AJR Am J Roentgenol 193:1680–1685

    Google Scholar 

  6. Davies AG, Cowen AR, Kengyelics SM et al (2007) Do flat detector cardiac X-ray systems convey advantages over image-intensifier-based systems? Study comparing X-ray dose and image quality. Eur Radiol 17:1787–1794

    Google Scholar 

  7. Formanek A, Nath PH, Zollikofer C et al (1980) Selective coronary arteriography in children. Circulation 61:84–95

    PubMed  CAS  Google Scholar 

  8. Vranicar M, Hirsch R, Canter CE et al (2000) Selective coronary angiography in pediatric patients. Pediatr Cardiol 21:285–288

    Article  PubMed  CAS  Google Scholar 

  9. Paul JF, Rohnean A, Elfassy E et al (2010) Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol 41:244–249

    Google Scholar 

  10. Ben Saad M, Rohnean A, Sigal-Cinqualbre A et al (2009) Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol 39:668–676

    Article  PubMed  Google Scholar 

  11. Cody DD, Mahesh M (2007) AAPM/RSNA physics tutorial for residents: Technologic advances in multidetector CT with a focus on cardiac imaging. Radiographics 27:1829–1837

    Article  PubMed  Google Scholar 

  12. McCollough CH, Schmidt B, Yu L et al (2008) Measurement of temporal resolution in dual source CT. Med Phys 35:764–768

    Article  PubMed  Google Scholar 

  13. Lell M, Hinkmann F, Anders K et al (2009) High-pitch electrocardiogram-triggered computed tomography of the chest: initial results. Invest Radiol 44:728–733

    Article  PubMed  Google Scholar 

  14. Efstathopoulos EP, Kelekis NL, Pantos I et al (2009) Reduction of the estimated radiation dose and associated patient risk with prospective ECG-gated 256-slice CT coronary angiography. Phys Med Biol 54:5209–5222

    Article  PubMed  CAS  Google Scholar 

  15. Einstein AJ, Elliston CD, Arai AE et al (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 254:698–706

    Article  PubMed  Google Scholar 

  16. Klass O, Walker M, Siebach A et al (2010) Prospectively gated axial CT coronary angiography: comparison of image quality and effective radiation dose between 64- and 256-slice CT. Eur Radiol 20:1124–1131

    Article  PubMed  Google Scholar 

  17. Kroft LJ, Roelofs JJ, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16- detector row CT acquisitions. Pediatr Radiol 40:294–300

    Article  PubMed  Google Scholar 

  18. Ou P, Celermajer DS, Calcagni G et al (2007) Three-dimensional CT scanning: a new diagnostic modality in congenital heart disease. Heart 93:908–913

    Article  PubMed  Google Scholar 

  19. Paul JF, Rohnean A, Sigal-Cinqualbre A (2010) Multidetector CT for congenital heart patients: what a paediatric radiologist should know. Pediatr Radiol 40:869–875

    Article  PubMed  Google Scholar 

  20. Tsai IC, Lee T, Chen MC et al (2007) Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique. Pediatr Radiol 37:818–825

    Article  PubMed  Google Scholar 

  21. Goo HW, Park IS, Ko JK et al (2005) Visibility of the origin and proximal course of coronary arteries on non-ECG-gated heart CT in patients with congenital heart disease. Pediatr Radiol 35:792–798

    Article  PubMed  Google Scholar 

  22. Lee C, Staton RJ, Hintenlang DE et al (2007) Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination. Med Phys 34:1858–1873

    Article  PubMed  Google Scholar 

  23. Ait-Ali L, Andreassi MG, Foffa I et al (2010) Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. Heart 96:269–274

    Article  PubMed  Google Scholar 

  24. Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323

    Article  PubMed  CAS  Google Scholar 

  25. Faletra FF, D’Angeli I, Klersy C et al (2010) Estimates of lifetime attributable risk of cancer after a single radiation exposure from 64-slice computed tomographic coronary angiography. Heart 96:927–932

    Article  PubMed  CAS  Google Scholar 

  26. Anonymous (2002) The ALARA (as low as reasonably achievable) concept in pediatric CT intelligent dose reduction. Multidisciplinary conference organized by the Society of Pediatric Radiology. August 18–19, 2001. Pediatr Radiol 32:217–313

    Article  Google Scholar 

  27. Willis CE, Slovis TL (2005) The ALARA concept in pediatric CR and DR: dose reduction in pediatric radiographic exams—a white paper conference. AJR 184:373–374

    PubMed  Google Scholar 

  28. Sigal-Cinqualbre AB, Hennequin R, Abada HT et al (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174

    Article  PubMed  Google Scholar 

  29. Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086

    Article  PubMed  Google Scholar 

  30. Leipsic J, Labounty TM, Heilbron B et al (2010) Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR 195:655–660

    Article  PubMed  Google Scholar 

  31. McCollough CH, Schueler BA (2000) Calculation of effective dose. Med Phys 27:828–837

    Article  PubMed  CAS  Google Scholar 

  32. Cohnen M, Poll LJ, Puettmann C et al (2003) Effective doses in standard protocols for multi-slice CT scanning. Eur Radiol 13:1148–1153

    PubMed  Google Scholar 

  33. Thomas KE, Wang B (2008) Age-specific effective doses for pediatric MSCT examinations at a large children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 38:645–656

    Article  PubMed  Google Scholar 

  34. Chapple CL, Willis S, Frame J (2002) Effective dose in paediatric computed tomography. Phys Med Biol 47:107–115

    Article  PubMed  CAS  Google Scholar 

  35. Ou P, Celermajer DS, Marini D et al (2008) Safety and accuracy of 64-slice computed tomography coronary angiography in children after the arterial switch operation for transposition of the great arteries. JACC Cardiovasc Imaging 1:331–339

    Article  PubMed  Google Scholar 

  36. Adler G, Meille L, Rohnean A et al (2010) Robustness of end-systolic reconstructions in coronary dual-source CT angiography for high heart rate patients. Eur Radiol 20:1118–1123

    Article  PubMed  Google Scholar 

  37. Araoz PA, Kirsch J, Primak AN et al (2009) Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography. Int J Cardiovasc Imaging 25:837–845

    Article  PubMed  Google Scholar 

  38. Hundley WG, Bluemke DA, Finn JP et al (2010) ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55:2614–2662

    Article  PubMed  Google Scholar 

  39. Manning WJ, Li W, Boyle NG et al (1993) Fat-suppressed breath-hold magnetic resonance coronary angiography. Circulation 87:94–104

    PubMed  CAS  Google Scholar 

  40. Manning WJ, Li W, Edelman RR (1993) A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 328:828–832

    Article  PubMed  CAS  Google Scholar 

  41. McConnell MV, Ganz P, Selwyn AP et al (1995) Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation 92:3158–3162

    PubMed  CAS  Google Scholar 

  42. Taylor AM, Thorne SA, Rubens MB et al (2000) Coronary artery imaging in grown up congenital heart disease: complementary role of magnetic resonance and x-ray coronary angiography. Circulation 101:1670–1678

    PubMed  CAS  Google Scholar 

  43. Vliegen HW, Doornbos J, de Roos A et al (1997) Value of fast gradient echo magnetic resonance angiography as an adjunct to coronary arteriography in detecting and confirming the course of clinically significant coronary artery anomalies. Am J Cardiol 79:773–776

    Article  PubMed  CAS  Google Scholar 

  44. Warnes CA, Williams RG, Bashore TM et al (2008) ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 52:e1–e121

    Article  PubMed  Google Scholar 

  45. Wang Y, Rossman PJ, Grimm RC et al (1996) Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology 198:55–60

    PubMed  CAS  Google Scholar 

  46. Kim WY, Danias PG, Stuber M et al (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1863–1869

    Article  PubMed  CAS  Google Scholar 

  47. Stuber M, Botnar RM, Danias PG et al (1999) Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 212:579–587

    PubMed  CAS  Google Scholar 

  48. Stuber M, Weiss RG (2007) Coronary magnetic resonance angiography. J Magn Reson Imaging 26:219–234

    Article  PubMed  Google Scholar 

  49. Weiger M, Pruessmann KP, Boesiger P (2000) Cardiac real-time imaging using SENSE. SENSitivity Encoding scheme. Magn Reson Med 43:177–184

    Article  PubMed  CAS  Google Scholar 

  50. Takemura A, Suzuki A, Inaba R et al (2007) Utility of coronary MR angiography in children with Kawasaki disease. AJR 188:W534–W539

    Article  PubMed  Google Scholar 

  51. McConnell MV, Stuber M, Manning WJ (2000) Clinical role of coronary magnetic resonance angiography in the diagnosis of anomalous coronary arteries. J Cardiovasc Magn Reson 2:217–224

    Article  PubMed  CAS  Google Scholar 

  52. Taylor AM, Dymarkowski S, Hamaekers P et al (2005) MR coronary angiography and late-enhancement myocardial MR in children who underwent arterial switch surgery for transposition of great arteries. Radiology 234:542–547

    Article  PubMed  Google Scholar 

  53. Mavrogeni S, Papadopoulos G, Douskou M et al (2004) Magnetic resonance angiography is equivalent to X-ray coronary angiography for the evaluation of coronary arteries in Kawasaki disease. J Am Coll Cardiol 43:649–652

    Article  PubMed  Google Scholar 

  54. Kellenberger CJ, Yoo SJ, Buchel ER (2007) Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiographics 27:5–18

    Article  PubMed  Google Scholar 

  55. Maintz D, Aepfelbacher FC, Kissinger KV et al (2004) Coronary MR angiography: comparison of quantitative and qualitative data from four techniques. AJR 182:515–521

    PubMed  Google Scholar 

  56. Meyer CH, Hu BS, Nishimura DG et al (1992) Fast spiral coronary artery imaging. Magn Reson Med 28:202–213

    Article  PubMed  CAS  Google Scholar 

  57. Stehning C, Bornert P, Nehrke K et al (2004) Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med 52:197–203

    Article  PubMed  CAS  Google Scholar 

  58. Yang PC, Meyer CH, Terashima M et al (2003) Spiral magnetic resonance coronary angiography with rapid real-time localization. J Am Coll Cardiol 41:1134–1141

    Article  PubMed  Google Scholar 

  59. Lai P, Huang F, Larson AC et al (2008) Fast four-dimensional coronary MR angiography with k-t GRAPPA. J Magn Reson Imaging 27:659–665

    Article  PubMed  Google Scholar 

  60. Bi X, Deshpande V, Simonetti O et al (2005) Three-dimensional breathhold SSFP coronary MRA: a comparison between 1.5 T and 3.0 T. J Magn Reson Imaging 22:206–212

    Article  PubMed  Google Scholar 

  61. Sommer T, Hackenbroch M, Hofer U et al (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234:718–725

    Article  PubMed  Google Scholar 

  62. van Elderen SG, Versluis MJ, Westenberg JJ et al (2010) Right coronary MR angiography at 7 T: a direct quantitative and qualitative comparison with 3 T in young healthy volunteers. Radiology 257:254–259

    Article  PubMed  Google Scholar 

  63. Yang CW, Carr JC, Francois CJ et al (2006) Coronary magnetic resonance angiography using magnetization-prepared contrast-enhanced breath-hold volume-targeted imaging (MPCE-VCATS). Invest Radiol 41:639–644

    Article  PubMed  Google Scholar 

  64. Bhat H, Yang Q, Zuehlsdorff S et al (2010) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3 T using interleaved echo planar imaging. Invest Radiol 45:458–464

    Article  PubMed  Google Scholar 

  65. Liu X, Bi X, Huang J et al (2008) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol 43:663–668

    Article  PubMed  Google Scholar 

  66. Sakuma H, Ichikawa Y, Suzawa N et al (2005) Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology 237:316–321

    Article  PubMed  Google Scholar 

  67. Noto TJ Jr, Johnson LW, Krone R et al (1991) Cardiac catheterization 1990: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I). Cathet Cardiovasc Diagn 24:75–83

    Article  PubMed  Google Scholar 

  68. Dewey M, Teige F, Schnapauff D et al (2006) Noninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med 145:407–415

    PubMed  Google Scholar 

  69. Schuijf JD, Bax JJ, Shaw LJ et al (2006) Meta-analysis of comparative diagnostic performance of magnetic resonance imaging and multislice computed tomography for noninvasive coronary angiography. Am Heart J 151:404–411

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lederlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lederlin, M., Thambo, JB., Latrabe, V. et al. Coronary imaging techniques with emphasis on CT and MRI. Pediatr Radiol 41, 1516–1525 (2011). https://doi.org/10.1007/s00247-011-2222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-011-2222-0

Keywords

Navigation