Skip to main content

Advertisement

Log in

Asynchronous neuro-osseous growth in adolescent idiopathic scoliosis—MRI-based research

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Adolescent idiopathic scoliosis (AIS) is a common worldwide problem and has been treated for many decades; however, there still remain uncertain areas about this disorder. Its involvement and impact on different parts of the human body remain underestimated due to lack of technology in imaging for objective assessment in the past. The advances in imaging technique and image analysis technology have provided a novel approach for the understanding of the phenotypic presentation of neuro-osseous changes in AIS patients as compared with normal controls. This review is the summary of morphological assessment of the skeletal and nervous systems in girls with AIS based on MRI. Girls with AIS are found to have morphological differences in multiple areas including the vertebral column, spinal cord, skull and brain when compared with age- and sex-matched normal controls. Taken together, the abnormalities in the skeletal system and nervous system of AIS are likely to be inter-related and reflect a systemic process of asynchronous neuro-osseous growth. The current knowledge about the anatomical changes in AIS has important implications with respect to the understanding of fundamental pathomechanical processes involved in the evolution of the scoliotic deformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AIS:

Adolescent idiopathic scoliosis

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

SSEP:

Somatosensory evoked potential

AP:

Antero-posterior

TS:

Transverse

References

  1. Naique SB, Porter R, Cunningham AA et al (2003) Scoliosis in an Orangutan. Spine 28:E143–145

    PubMed  Google Scholar 

  2. Ahn UM, Ahn NU, Nallamshetty L et al (2002) The etiology of adolescent idiopathic scoliosis. Am J Orthop 31:387–395

    PubMed  Google Scholar 

  3. Burwell RG (2003) Aetiology of idiopathic scoliosis: current concepts. Pediatr Rehabil 6:137–170

    PubMed  CAS  Google Scholar 

  4. Lowe TG, Edgar M, Margulies JY et al (2003) Etiology of scoliosis. In: deWald R (ed) Spine deformities: the comprehensive text, 1st edn. Thieme Medical Publishers, Inc, New York, pp 656–668

    Google Scholar 

  5. Veldhuizen AG, Wever DJ, Webb PJ (2000) The aetiology of idiopathic scoliosis: biomechanical and neuromuscular factors. Eur Spine J 9:178–184

    Article  PubMed  CAS  Google Scholar 

  6. Weinstein SL, Dolan LA, Cheng JC et al (2008) Adolescent idiopathic scoliosis. Lancet 371:1527–1537

    Article  PubMed  Google Scholar 

  7. Samuelsson L, Lindell D, Kogler H (1991) Spinal cord and brain stem anomalies in scoliosis. MR screening of 26 cases. Acta Orthop Scand 62:403–406

    Article  PubMed  CAS  Google Scholar 

  8. Charry O, Koop S, Winter R et al (1994) Syringomyelia and scoliosis: a review of twenty-five pediatric patients. J Pediatr Orthop 14:309–317

    Article  PubMed  CAS  Google Scholar 

  9. Ozturk C, Karadereler S, Ornek I et al (2009) The role of routine magnetic resonance imaging in the preoperative evaluation of adolescent idiopathic scoliosis. Int Orthop 34:543–546

    Article  PubMed  Google Scholar 

  10. Noordeen MH, Taylor BA, Edgar MA (1994) Syringomyelia. A potential risk factor in scoliosis surgery. Spine 19:1406–1409

    Article  PubMed  CAS  Google Scholar 

  11. Ferguson RL, DeVine J, Stasikelis P et al (2002) Outcomes in surgical treatment of “idiopathic-like” scoliosis associated with syringomyelia. J Spinal Disord Tech 15:301–306

    Article  PubMed  Google Scholar 

  12. Davids JR, Chamberlin E, Blackhurst DW (2004) Indications for magnetic resonance imaging in presumed adolescent idiopathic scoliosis. J Bone Jt Surg Am 86-A:2187–2195

    Google Scholar 

  13. Akhtar OH, Rowe DE (2008) Syringomyelia-associated scoliosis with and without the Chiari I malformation. J Am Acad Orthop Surg 16:407–417

    PubMed  Google Scholar 

  14. Inoue M, Minami S, Nakata Y et al (2005) Preoperative MRI analysis of patients with idiopathic scoliosis: a prospective study. Spine 30:108–114

    PubMed  Google Scholar 

  15. Loder RT, Stasikelis P, Farley FA (2002) Sagittal profiles of the spine in scoliosis associated with an Arnold-Chiari malformation with or without syringomyelia. J Pediatr Orthop 22:483–491

    Article  PubMed  Google Scholar 

  16. Spiegel DA, Flynn JM, Stasikelis PJ et al (2003) Scoliotic curve patterns in patients with Chiari I malformation and/or syringomyelia. Spine 28:2139–2146

    Article  PubMed  Google Scholar 

  17. Arai S, Ohtsuka Y, Moriya H et al (1993) Scoliosis associated with syringomyelia. Spine 18:1591–1592

    Article  PubMed  CAS  Google Scholar 

  18. Isu T, Chono Y, Iwasaki Y et al (1992) Scoliosis associated with syringomyelia presenting in children. Childs Nerv Syst 8:97–100

    Article  PubMed  CAS  Google Scholar 

  19. Yeom JS, Lee CK, Park KW et al (2007) Scoliosis associated with syringomyelia: analysis of MRI and curve progression. Eur Spine J 16:1629–1635

    Article  PubMed  Google Scholar 

  20. O’Brien MF, Lenke LG, Bridwell KH et al (1994) Preoperative spinal canal investigation in adolescent idiopathic scoliosis curves > or = 70 degrees. Spine 19:1606–1610

    Article  PubMed  Google Scholar 

  21. Schwend RM, Hennrikus W, Hall JE et al (1995) Childhood scoliosis: clinical indications for magnetic resonance imaging. J Bone Jt Surg 77:46–53

    CAS  Google Scholar 

  22. Winter RB, Lonstein JE, Heithoff KB et al (1997) Magnetic resonance imaging evaluation of the adolescent patient with idiopathic scoliosis before spinal instrumentation and fusion. A prospective, double-blinded study of 140 patients. Spine 22:855–858

    Article  PubMed  CAS  Google Scholar 

  23. Shen WJ, McDowell GS, Burke SW et al (1996) Routine preoperative MRI and SEP studies in adolescent idiopathic scoliosis. J Pediatr Orthop 16:350–353

    Article  PubMed  CAS  Google Scholar 

  24. Do T, Fras C, Burke S et al (2001) Clinical value of routine preoperative magnetic resonance imaging in adolescent idiopathic scoliosis. A prospective study of three hundred and twenty-seven patients. J Bone Jt Surg Am 83-A:577–579

    CAS  Google Scholar 

  25. Benli IT, Uzumcugil O, Aydin E et al (2006) Magnetic resonance imaging abnormalities of neural axis in Lenke type 1 idiopathic scoliosis. Spine 31:1828–1833

    Article  PubMed  Google Scholar 

  26. Cassar-Pullicino VN, Eisenstein SM (2002) Imaging in scoliosis: what, why and how? Clin Radiol 57:543–562

    Article  PubMed  CAS  Google Scholar 

  27. Barnes PD, Brody JD, Jaramillo D et al (1993) Atypical idiopathic scoliosis: MR imaging evaluation. Radiology 186:247–253

    PubMed  CAS  Google Scholar 

  28. Conrad RW, Richardson WJ, Oakes WJ (1985) Left thoracic curves can be different. Orthop Trans 9:126–127

    Google Scholar 

  29. Zadeh HG, Sakka SA, Powell MP et al (1995) Absent superficial abdominal reflexes in children with scoliosis. An early indicator of syringomyelia. J Bone Jt Surg Br 77:762–767

    CAS  Google Scholar 

  30. Cheng JC, Guo X, Sher AH et al (1999) Correlation between curve severity, somatosensory evoked potentials, and magnetic resonance imaging in adolescent idiopathic scoliosis. Spine 24:1679–1684

    Article  PubMed  CAS  Google Scholar 

  31. Guo X, Chau WW, Chan YL et al (2005) Relative anterior spinal overgrowth in adolescent idiopathic scoliosis—result of disproportionate endochondral-membranous bone growth? Summary of an electronic focus group debate of the IBSE. Eur Spine J 14:862–873

    Article  PubMed  CAS  Google Scholar 

  32. Taylor JR (1983) Scoliosis and growth. Patterns of asymmetry in normal vertebral growth. Acta Orthop Scand 54:596–602

    Article  PubMed  CAS  Google Scholar 

  33. Rajwani T, Bagnall KM, Lambert R et al (2004) Using magnetic resonance imaging to characterize pedicle asymmetry in both normal patients and patients with adolescent idiopathic scoliosis. Spine 29:E145–E152

    Article  PubMed  CAS  Google Scholar 

  34. Birchall D, Hughes D, Gregson B et al (2005) Demonstration of vertebral and disc mechanical torsion in adolescent idiopathic scoliosis using three-dimensional MR imaging. Eur Spine J 14:123–129

    Article  PubMed  Google Scholar 

  35. Liljenqvist UR, Allkemper T, Hackenberg L et al (2002) Analysis of vertebral morphology in idiopathic scoliosis with use of magnetic resonance imaging and multiplanar reconstruction. J Bone Jt Surg 84-A:359–368

    Google Scholar 

  36. Chu WC, Yeung HY, Chau WW et al (2006) Changes in vertebral neural arch morphometry and functional tethering of spinal cord in adolescent idiopathic scoliosis—study with multi-planar reformat magnetic resonance imaging. Stud Health Technol Inform 123:27–33

    PubMed  Google Scholar 

  37. Mehlman CT, Araghi A, Roy DR (1997) Hyphenated history: the Hueter-Volkmann law. Am J Orthop 26:798–800

    PubMed  CAS  Google Scholar 

  38. Stokes IA (2002) Mechanical effects on skeletal growth. J Musculoskelet Neuronal Interact 2:277–280

    PubMed  CAS  Google Scholar 

  39. Perie D, Sales de Gauzy J, Curnier D et al (2001) Intervertebral disc modeling using a MRI method: migration of the nucleus zone within scoliotic intervertebral discs. Magn Reson Imaging 19:1245–1248

    Article  PubMed  CAS  Google Scholar 

  40. Violas P, Estivalezes E, Pedrono A et al (2005) A method to investigate intervertebral disc morphology from MRI in early idiopathic scoliosis: a preliminary evaluation in a group of 14 patients. Magn Reson Imaging 23:475–479

    Article  PubMed  Google Scholar 

  41. Chu WC, Lam WW, Chan YL et al (2006) Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine 31:E19–25

    Article  PubMed  Google Scholar 

  42. Chu WCW, Man GCW, Lam WWM et al (2007) Morphological and functional evidence of relative spinal cord tethering in AIS. A study with MRI and somatosensory evoked potential. 42nd SRS Scoliosis Research Society Annual Meeting, Edinburgh, Scotland

  43. Dohn P, Vialle R, Thevenin-Lemoine C et al (2009) Assessing the rotation of the spinal cord in idiopathic scoliosis: a preliminary report of MRI feasibility. Childs Nerv Syst 25:479–483

    Article  PubMed  Google Scholar 

  44. Cheng JC, Chau WW, Guo X et al (2003) Redefining the magnetic resonance imaging reference level for the cerebellar tonsil: a study of 170 adolescents with normal versus idiopathic scoliosis. Spine 28:815–818

    PubMed  Google Scholar 

  45. Sun XJ, Wang QC, Shao ZG (2007) Temporal and spatial variation rule of mercury in sediments in middle and lower reaches of the Second Songhua River. Huan Jing Ke Xue 28:1062–1066

    PubMed  CAS  Google Scholar 

  46. Abul-Kasim K, Overgaard A, Karlsson MK et al (2009) Tonsillar ectopia in idiopathic scoliosis: does it play a role in the pathogenesis and prognosis or is it only an incidental finding? Scoliosis 4:25

    Article  PubMed  Google Scholar 

  47. Cheng JC, Guo X, Sher AH (1998) Posterior tibial nerve somatosensory cortical evoked potentials in adolescent idiopathic scoliosis. Spine 23:332–337

    Article  PubMed  CAS  Google Scholar 

  48. Haughton VM, Korosec FR, Medow JE et al (2003) Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants. AJNR 24:169–176

    PubMed  Google Scholar 

  49. Iskandar BJ, Quigley M, Haughton VM (2004) Foramen magnum cerebrospinal fluid flow characteristics in children with Chiari I malformation before and after craniocervical decompression. J Neurosurg 101:169–178

    PubMed  Google Scholar 

  50. Panigrahi M, Reddy BP, Reddy AK et al (2004) CSF flow study in Chiari I malformation. Childs Nerv Syst 20:336–340

    Article  PubMed  CAS  Google Scholar 

  51. Oldfield EH, Muraszko K, Shawker TH et al (1994) Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J Neurosurg 80:3–15

    Article  PubMed  CAS  Google Scholar 

  52. Chu WC, Man GC, Lam WW et al (2007) A detailed morphologic and functional magnetic resonance imaging study of the craniocervical junction in adolescent idiopathic scoliosis. Spine 32:1667–1674

    Article  PubMed  Google Scholar 

  53. Shi L, Heng PA, Wong TT et al (2006) Morphometric analysis for pathological abnormality detection in the skull vaults of adolescent idiopathic scoliosis girls. Med Image Comput Comput Assist Interv 9:175–182

    PubMed  Google Scholar 

  54. Yeung HY, Chu WC, Man C et al (2007) Abnormal membranous and endochondral ossification in adolescent idiopathic scoliosis. A MRI geometrical study of the calvarium and basicranium. Scoliosis Research Society 42nd Annual Meeting and Course, Edinburgh, Scotland

  55. Liu T, Chu WC, Young G et al (2008) MR analysis of regional brain volume in adolescent idiopathic scoliosis: neurological manifestation of a systemic disease. J Magn Reson Imaging 27:732–736

    Article  PubMed  Google Scholar 

  56. Hausmann ON, Boni T, Pfirrmann CW et al (2003) Preoperative radiological and electrophysiological evaluation in 100 adolescent idiopathic scoliosis patients. Eur Spine J 12:501–506

    Article  PubMed  Google Scholar 

  57. Chau WW, Guo X, Fu LLL et al (2004) Abnormal somatosensory evoked potential (SSEP) in adolescent with idiopathic scoliosis—the site of abnormality. In: Sawatzhy BJ (ed) International Research Society of Spinal Deformities Symposium, Vancouver, Canada, pp 279–281

  58. Shi L, Wang D, Chu WC et al (2009) Volume-based morphometry of brain MR images in adolescent idiopathic scoliosis and healthy control subjects. AJNR 30:1302–1307

    Article  PubMed  CAS  Google Scholar 

  59. Wang D, Shi L, Chu WC et al (2009) A comparison of morphometric techniques for studying the shape of the corpus callosum in adolescent idiopathic scoliosis. Neuroimage 45:738–748

    Article  PubMed  CAS  Google Scholar 

  60. Cheng JC, Guo X (1997) Osteopenia in adolescent idiopathic scoliosis. A primary problem or secondary to the spinal deformity? Spine 22:1716–1721

    Article  PubMed  CAS  Google Scholar 

  61. Cheng JC, Guo X, Sher AH (1999) Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine 24:1218–1222

    Article  PubMed  CAS  Google Scholar 

  62. Cheung CSK, Lee WTK, Tse YK et al (2003) Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine 28:2152–2157

    Article  Google Scholar 

  63. Burwell RG, Aujla RK, Freeman BJ et al (2006) Patterns of extra-spinal left-right skeletal asymmetries in adolescent girls with lower spine scoliosis: relative lengthening of the ilium on the curve concavity & of right lower limb segments. Stud Health Technol Inform 123:57–65

    PubMed  CAS  Google Scholar 

  64. Zhu F, Qiu Y, Yeung HY et al (2006) Histomorphometric study of the spinal growth plates in idiopathic scoliosis and congenital scoliosis. Pediatr Int 48:591–598

    Article  PubMed  Google Scholar 

  65. Roth M (1968) Idiopathic scoliosis caused by a short spinal cord. Acta Radiol Diagn (Stockh) 7:257–271

    CAS  Google Scholar 

  66. Porter RW (2000) Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine 25:1360–1366

    Article  PubMed  CAS  Google Scholar 

  67. Porter RW (2001) The pathogenesis of idiopathic scoliosis: uncoupled neuro-osseous growth? Eur Spine J 10:473–481

    Article  PubMed  CAS  Google Scholar 

  68. Guo X, Chau WW, Hui-Chan CW et al (2006) Balance control in adolescents with idiopathic scoliosis and disturbed somatosensory function. Spine 31:E437–440

    Article  PubMed  Google Scholar 

  69. Lao ML, Chow DH, Guo X et al (2008) Impaired dynamic balance control in adolescents with idiopathic scoliosis and abnormal somatosensory evoked potentials. J Pediatr Orthop 28:846–849

    Article  PubMed  Google Scholar 

  70. Beaulieu M, Toulotte C, Gatto L et al (2009) Postural imbalance in non-treated adolescent idiopathic scoliosis at different periods of progression. Eur Spine J 18:38–44

    Article  PubMed  Google Scholar 

  71. Simoneau M, Richer N, Mercier P et al (2006) Sensory deprivation and balance control in idiopathic scoliosis adolescent. Exp Brain Res 170:576–582

    Article  PubMed  Google Scholar 

  72. Mahaudens P, Banse X, Mousny M et al (2009) Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. Eur Spine J 18:512–521

    Article  PubMed  CAS  Google Scholar 

  73. Bruyneel AV, Chavet P, Bollini G et al (2009) Dynamical asymmetries in idiopathic scoliosis during forward and lateral initiation step. Eur Spine J 18:188–195

    Article  PubMed  Google Scholar 

  74. Wiener-Vacher SR, Mazda K (1998) Asymmetric otolith vestibulo-ocular responses in children with idiopathic scoliosis. J Pediatr 132:1028–1032

    Article  PubMed  CAS  Google Scholar 

  75. McInnes E, Hill DL, Raso VJ et al (1991) Vibratory response in adolescents who have idiopathic scoliosis. J Bone Jt Surg 73:1208–1212

    CAS  Google Scholar 

  76. O’Beirne J, Goldberg C, Dowling FE et al (1989) Equilibrial dysfunction in scoliosis—cause or effect? J Spinal Disord 2:184–189

    Article  PubMed  Google Scholar 

  77. Kimiskidis VK, Potoupnis M, Papagiannopoulos SK et al (2007) Idiopathic scoliosis: a transcranial magnetic stimulation study. J Musculoskel Neuronal Interact 7:155–160

    CAS  Google Scholar 

  78. Herman R, Mixon J, Fisher A et al (1985) Idiopathic scoliosis and the central nervous system: a motor control problem. The Harrington lecture, 1983. Scoliosis Research Society. Spine 10:1–14

    Article  PubMed  CAS  Google Scholar 

  79. Lowe TG, Edgar M, Margulies JY et al (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Jt Surg 82-A:1157–1168

    CAS  Google Scholar 

  80. Burwell RG, Dangerfield PH, Freeman BJ (2008) Concepts on the pathogenesis of adolescent idiopathic scoliosis. Bone growth and mass, vertebral column, spinal cord, brain, skull, extra-spinal left-right skeletal length asymmetries, disproportions and molecular pathogenesis. Stud Health Technol Inform 135:3–52

    PubMed  Google Scholar 

  81. Burwell RG, Freeman BJ, Dangerfield PH (2006) A neurodevelopmental concept for adolescent idiopathic scoliosis(AIS): maturational delay of the CNS body schema (“body in the brain”). Aetiology of adolescent idiopathic scoliosis, 11th International Phillip Zorab Symposium, Christ Church, Oxford, UK

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winnie C. W. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, W.C.W., Rasalkar, D.D. & Cheng, J.C.Y. Asynchronous neuro-osseous growth in adolescent idiopathic scoliosis—MRI-based research. Pediatr Radiol 41, 1100–1111 (2011). https://doi.org/10.1007/s00247-010-1778-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-010-1778-4

Keywords

Navigation