Skip to main content
Log in

Exploring the Activities of RBPMS Proteins in Myocardial Biology

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Numerous RNA-binding proteins (RBPs) are expressed in the heart, and mutations in several RBPs have been implicated in cardiovascular disease through genetic associations, animal modeling, and mechanistic studies. However, the functions of many more cardiac RBPs, and their relevance to disease states, remain to be elucidated. Recently, we have initiated studies to characterize the functions of the RBPs RBPMS and RBPMS2 in regulating myocardial biology in zebrafish and higher vertebrate species. These studies began when we learned, using an unbiased gene discovery approach, that rbpms2a and rbpms2b in zebrafish are robust markers of embryonic myocardium. This observation, which is consistent with published data, suggests that the encoded proteins are likely to be performing critical functions in regulating one or more aspects of cardiomyocyte differentiation, proliferation, survival, and/or contractility. This notion is supported by recent reports demonstrating that zebrafish embryos with disrupted Rbpms2 function exhibit gross signs of cardiac distress. Interestingly, a 20-year-old study determined that myocardial tissue from the frog, chick, and mouse also express high levels of Rbpms and/or Rbpms2, which is suggestive of evolutionary conservation of function. In this review, we will provide a historical account of how RBPMS and RBPMS2 genes were discovered, attempt to clarify some potentially confusing nomenclature, and summarize published observations that inform our ongoing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dominguez D, Freese P, Alexis MS et al (2018) Sequence, structure, and context preferences of human RNA binding proteins. Mol Cell 70:854.e9–867.e9. https://doi.org/10.1016/j.molcel.2018.05.001

    Article  CAS  Google Scholar 

  2. Lukong KE, Chang K-W, Khandjian EW, Richard S (2008) RNA-binding proteins in human genetic disease. Trends Genet 24:416–425. https://doi.org/10.1016/j.tig.2008.05.004

    Article  CAS  PubMed  Google Scholar 

  3. Liao Y, Castello A, Fischer B et al (2016) The cardiomyocyte RNA-binding proteome: links to intermediary metabolism and heart disease. Cell Rep 16:1456–1469. https://doi.org/10.1016/j.celrep.2016.06.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Bruin RG, Rabelink TJ, van Zonneveld AJ, van der Veer EP (2017) Emerging roles for RNA-binding proteins as effectors and regulators of cardiovascular disease. Eur Heart J 38:1380–1388. https://doi.org/10.1093/eurheartj/ehw567

    Article  CAS  PubMed  Google Scholar 

  5. Ladd AN (2016) New insights into the role of RNA-binding proteins in the regulation of heart development. Int Rev Cell Mol Biol 324:125–185. https://doi.org/10.1016/bs.ircmb.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  6. Blech-Hermoni Y, Ladd AN (2013) RNA binding proteins in the regulation of heart development. Int J Biochem Cell Biol 45:2467–2478. https://doi.org/10.1016/j.biocel.2013.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giudice J, Cooper TA (2014) RNA-binding proteins in heart development. Adv Exp Med Biol 825:389–429. https://doi.org/10.1007/978-1-4939-1221-6_11

    Article  CAS  PubMed  Google Scholar 

  8. Shimamoto A, Kitao S, Ichikawa K et al (1996) A unique human gene that spans over 230 kb in the human chromosome 8p11-12 and codes multiple family proteins sharing RNA-binding motifs. Proc Natl Acad Sci USA 93:10913–10917

    Article  CAS  PubMed  Google Scholar 

  9. Gerber WV, Yatskievych TA, Antin PB et al (1999) The RNA-binding protein gene, hermes, is expressed at high levels in the developing heart. Mech Dev 80:77–86

    Article  CAS  PubMed  Google Scholar 

  10. Sayers EW, Agarwala R, Bolton EE et al (2019) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 47:D23–D28. https://doi.org/10.1093/nar/gky1069

    Article  CAS  PubMed  Google Scholar 

  11. Sievers F, Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27:135–145. https://doi.org/10.1002/pro.3290

    Article  CAS  PubMed  Google Scholar 

  12. Wilmore HP, McClive PJ, Smith CA, Sinclair AH (2005) Expression profile of the RNA-binding protein gene hermes during chicken embryonic development. Dev Dyn 233:1045–1051. https://doi.org/10.1002/dvdy.20392

    Article  CAS  PubMed  Google Scholar 

  13. Zearfoss NR, Chan AP, Wu CF et al (2004) Hermes is a localized factor regulating cleavage of vegetal blastomeres in Xenopus laevis. Dev Biol 267:60–71. https://doi.org/10.1016/j.ydbio.2003.10.032

    Article  CAS  PubMed  Google Scholar 

  14. Hörnberg H, Wollerton-van Horck F, Maurus D et al (2013) RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo. J Neurosci 33:10384–10395. https://doi.org/10.1523/JNEUROSCI.5858-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Rooij FJA, Qayyum R, Smith AV et al (2017) Genome-wide trans-ethnic meta-analysis identifies seven genetic loci influencing erythrocyte traits and a role for RBPMS in erythropoiesis. Am J Hum Genet 100:51–63. https://doi.org/10.1016/j.ajhg.2016.11.016

    Article  CAS  PubMed  Google Scholar 

  16. Kaufman OH, Lee K, Martin M et al (2018) rbpms2 functions in Balbiani body architecture and ovary fate. PLoS Genet 14:e1007489. https://doi.org/10.1371/journal.pgen.1007489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hörnberg H, Cioni J-M, Harris WA, Holt CE (2016) hermes regulates axon sorting in the optic tract by post-trancriptional regulation of neuropilin 1. J Neurosci 36:12697–12706. https://doi.org/10.1523/JNEUROSCI.2400-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kosaka K, Kawakami K, Sakamoto H, Inoue K (2007) Spatiotemporal localization of germ plasm RNAs during zebrafish oogenesis. Mech Dev 124:279–289. https://doi.org/10.1016/j.mod.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Cashman TJ, Nevis KR et al (2011) Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature 474:645–648. https://doi.org/10.1038/nature10094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paffett-Lugassy N, Singh R, Nevis KR et al (2013) Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis. Nat Cell Biol 15:1362–1369. https://doi.org/10.1038/ncb2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guner-Ataman B, Paffett-Lugassy N, Adams MS et al (2013) Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development 140:1353–1363. https://doi.org/10.1242/dev.088351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paffett-Lugassy N, Novikov N, Jeffrey S et al (2017) Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development 144:4616–4624. https://doi.org/10.1242/dev.153411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Novikov N, Evans T (2013) Tmem88a mediates GATA-dependent specification of cardiomyocyte progenitors by restricting WNT signaling. Development 140:3787–3798. https://doi.org/10.1242/dev.093567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Farazi TA, Leonhardt CS, Mukherjee N et al (2014) Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. RNA 20:1090–1102. https://doi.org/10.1261/rna.045005.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Notarnicola C, Rouleau C, Le Guen L et al (2012) The RNA-binding protein RBPMS2 regulates development of gastrointestinal smooth muscle. Gastroenterology 143(687–97):e1–9. https://doi.org/10.1053/j.gastro.2012.05.047

    Article  CAS  Google Scholar 

  26. Piri N, Kwong JMK, Song M, Caprioli J (2006) Expression of hermes gene is restricted to the ganglion cells in the retina. Neurosci Lett 405:40–45. https://doi.org/10.1016/j.neulet.2006.06.049

    Article  CAS  PubMed  Google Scholar 

  27. Kwong JMK, Caprioli J, Piri N (2010) RNA binding protein with multiple splicing: a new marker for retinal ganglion cells. Invest Ophthalmol Vis Sci 51:1052–1058. https://doi.org/10.1167/iovs.09-4098

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gerber WV, Vokes SA, Zearfoss NR, Krieg PA (2002) A role for the RNA-binding protein, hermes, in the regulation of heart development. Dev Biol 247:116–126. https://doi.org/10.1006/dbio.2002.0678

    Article  CAS  PubMed  Google Scholar 

  29. Grajevskaja V, Camerota D, Bellipanni G et al (2018) Analysis of a conditional gene trap reveals that tbx5a is required for heart regeneration in zebrafish. PLoS ONE 13:e0197293. https://doi.org/10.1371/journal.pone.0197293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song H-W, Cauffman K, Chan AP et al (2007) Hermes RNA-binding protein targets RNAs-encoding proteins involved in meiotic maturation, early cleavage, and germline development. Differentiation 75:519–528. https://doi.org/10.1111/j.1432-0436.2006.00155.x

    Article  CAS  PubMed  Google Scholar 

  31. Aguero T, Zhou Y, Kloc M et al (2016) Hermes (Rbpms) is a critical component of RNP complexes that sequester germline RNAs during oogenesis. J Dev Biol. https://doi.org/10.3390/jdb4010002

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heim AE, Hartung O, Rothhämel S et al (2014) Oocyte polarity requires a Bucky ball-dependent feedback amplification loop. Development 141:842–854. https://doi.org/10.1242/dev.090449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teplova M, Farazi TA, Tuschl T, Patel DJ (2015) Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS. Q Rev Biophys. https://doi.org/10.1017/S0033583515000207

    Article  CAS  Google Scholar 

  34. Sagnol S, Yang Y, Bessin Y et al (2014) Homodimerization of RBPMS2 through a new RRM-interaction motif is necessary to control smooth muscle plasticity. Nucleic Acids Res 42:10173–10184. https://doi.org/10.1093/nar/gku692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sagnol S, Marchal S, Yang Y et al (2016) Epithelial splicing regulatory protein 1 (ESRP1) is a new regulator of stomach smooth muscle development and plasticity. Dev Biol. https://doi.org/10.1016/j.ydbio.2016.04.015

    Article  PubMed  Google Scholar 

  36. Spitzer J, Hafner M, Landthaler M et al (2014) PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Method Enzymol 539:113–161. https://doi.org/10.1016/B978-0-12-420120-0.00008-6

    Article  CAS  Google Scholar 

  37. Soufari H, Mackereth CD (2017) Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family. RNA 23:308–316. https://doi.org/10.1261/rna.059733.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Furukawa MT, Sakamoto H, Inoue K (2015) Interaction and colocalization of HERMES/RBPMS with NonO, PSF, and G3BP1 in neuronal cytoplasmic RNP granules in mouse retinal line cells. Genes Cells 20:257–266. https://doi.org/10.1111/gtc.12224

    Article  CAS  PubMed  Google Scholar 

  39. Balasanyan V, Arnold DB (2014) Actin and myosin-dependent localization of mRNA to dendrites. PLoS ONE 9:e92349. https://doi.org/10.1371/journal.pone.0092349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nijjar S, Woodland HR (2013) Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes. PLoS ONE 8:e61847. https://doi.org/10.1371/journal.pone.0061847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nijjar S, Woodland HR (2013) Protein interactions in Xenopus germ plasm RNP particles. PLoS ONE 8:e80077. https://doi.org/10.1371/journal.pone.0080077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun Y, Ding L, Zhang H et al (2006) Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS. Nucleic Acids Res 34:6314–6326. https://doi.org/10.1093/nar/gkl914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fu J, Cheng L, Wang Y et al (2015) The RNA-binding protein RBPMS1 represses AP-1 signaling and regulates breast cancer cell proliferation and migration. Biochim Biophys Acta 1853:1–13. https://doi.org/10.1016/j.bbamcr.2014.09.022

    Article  CAS  PubMed  Google Scholar 

  44. Mendler JH, Maharry K, Radmacher MD et al (2012) RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol 30:3109–3118. https://doi.org/10.1200/JCO.2011.40.6652

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hapkova I, Skarda J, Rouleau C et al (2013) High expression of the RNA-binding protein RBPMS2 in gastrointestinal stromal tumors. Exp Mol Pathol 94:314–321. https://doi.org/10.1016/j.yexmp.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  46. Skawran B, Steinemann D, Becker T et al (2008) Loss of 13q is associated with genes involved in cell cycle and proliferation in dedifferentiated hepatocellular carcinoma. Mod Pathol 21:1479–1489. https://doi.org/10.1038/modpathol.2008.147

    Article  CAS  PubMed  Google Scholar 

  47. Báez-Vega PM, Vargas IME, Valiyeva F et al (2016) Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells. Oncotarget. https://doi.org/10.18632/oncotarget.9216

    Article  PubMed  PubMed Central  Google Scholar 

  48. Penney KL, Sinnott JA, Tyekucheva S et al (2015) Association of prostate cancer risk variants with gene expression in normal and tumor tissue. Cancer Epidemiol Biomarkers Prev 24:255–260. https://doi.org/10.1158/1055-9965.EPI-14-0694-T

    Article  CAS  PubMed  Google Scholar 

  49. Rankinen T, Sung YJ, Sarzynski MA et al (2012) Heritability of submaximal exercise heart rate response to exercise training is accounted for by nine SNPs. J Appl Physiol 112:892–897. https://doi.org/10.1152/japplphysiol.01287.2011

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

AAA is supported by the National Institutes of Health (NIH) Cell and Molecular Training for Cardiovascular Biology Grant T32HL007208 awarded to the Cardiovascular Research Center at Massachusetts General Hospital. Research in the Burns Laboratory is supported by NIH Grants R01HL139806 (PI:CGB), R35HL135831 (PI:CEB), and R01HL127067 (MPI:CGB and CEB). CEB is a d’Arbeloff MGH Research Scholar, and CGB is an MGH Hassenfeld Cardiovascular Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Geoffrey Burns.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akerberg, A.A., Burns, C.E. & Burns, C.G. Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol 40, 1410–1418 (2019). https://doi.org/10.1007/s00246-019-02180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-019-02180-6

Keywords

Navigation