Skip to main content

Advertisement

Log in

Primary Noncompaction of the Ventricular Myocardium from the Morphogenetic Standpoint

  • REVIEW
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

This review compiles the current knowledge of normal and abnormal myocardial morphogenesis to facilitate an unambiguous diagnosis of primary myocardial noncompaction. During the early stages of development, the formation of trabeculae with the resulting increase in myocardial surface is a adaptation of the rapidly growing heart to improve nourishment by exchange diffusion from the cardiac lumen. Once the coronary vasculature has developed, the switch to cardiac nutrient supply through active circulation from the subepicardial space is paralleled by gradual compaction of the myocardial trabeculae. This results in a decrease of the inner, trabeculated myocardial layer with a parallel increase in thickness of the outer, compact myocardial layer. Similar to the direction of coronary arterial development, this process proceeds from the epicardium toward the endocardium and from the base of the heart to the apex. Based on developmental data, congenital myocardial noncompaction represents a failure of normal embryonic myocardial maturation. The time of arrest of this process will determine the extension of myocardial noncompaction within the ventricle. Whereas disturbances of myocardial microcirculation are frequent in these hearts, direct communications between the myocardial cavity and the coronary arteries (sinusoids) do not belong to this morphogenetic entity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agmon Y, Connolly HM, Olson LJ, Khandheria BK, Seward JB (1999) Noncompaction of the ventricular myocardium. J Am Soc Echocardiogr 12:859–863

    Article  CAS  PubMed  Google Scholar 

  2. Barth PG, Wanders RJA, Vreken P, et al. (1999) X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) (MIM 302060). J Inher Metab Dis 22:555–567

    Article  CAS  PubMed  Google Scholar 

  3. Bleyl SB, Mumfrod BR, Brown-Harrison MC, et al. (1997) Xq28-linked noncompaction of the ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet 72:257–265

    Article  CAS  PubMed  Google Scholar 

  4. Bogers AJJC, Gittenberger-de Groot AC, Poelmann RE, Péault BM, Huysmans HA (1989) Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol 180:437–441

    Article  CAS  PubMed  Google Scholar 

  5. Boyd MT, Seward JB, Tajik AJ, Edwards WD (1987) Frequency and location of prominent left ventricular trabeculations at autopsy in 474 normal human hearts: implications for evaluation of mural thrombi by two-dimensional echocardiography. J Am Coll Cardiol 9:323–326

    Article  CAS  PubMed  Google Scholar 

  6. Buonanno C, Variola A, Dander B, Gabaldo S, Marafioti V (2000) Isolated noncompaction of the myocardium: an exceedingly rare cardiomyopathy. A case report. Ital Heart J 1:301–305

    CAS  PubMed  Google Scholar 

  7. Calder AL, Co EE, Sage MD (1987) Coronary arterial abnormalities in pulmonary atresia with intact ventricular septum. Am J Cardiol 59:436–442

    Article  CAS  PubMed  Google Scholar 

  8. Cantlay AM, Shokrollahi K, Allen JT, et al. (1999) Genetic analysis of the G4.5 gene families with suspected Barth syndrome. J Pediatr 135:311–315

    Article  CAS  PubMed  Google Scholar 

  9. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R (1990) Isolated noncompaction of the left ventricular myocardium. A study of eight cases. Circulation 82:507–513

    CAS  PubMed  Google Scholar 

  10. Conraads V, Paelinck B, Vorlat A, et al. (2001) Isolated non-compaction of the left ventricle: a rare indication for transplantation. J Heart Lung Transplant 20:904–907

    Article  CAS  PubMed  Google Scholar 

  11. Corrado G, Checcarelli N, Santarone M, Stollberger C, Finsterer J (2006) Left ventricular hypertrabeculation/noncompaction with PMP22 duplication-based Charcot–Marie–Tooth disease type 1A. Cardiology 105:142–145

    Article  PubMed  Google Scholar 

  12. D’Adamo P, Fassone L, Gedeon A, et al. (1997) The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet 61:862–867

    CAS  PubMed  Google Scholar 

  13. Daimon Y, Watanabe S, Takeda S, Hijikata Y, Komuro I (2002) Two-layered appearance of noncompaction of the ventricular myocardium on magnetic resonance imaging. Circ J 66:619–621

    Article  PubMed  Google Scholar 

  14. Daubeney P, Nugent A, Cheung M, et al. (2001) The natural history of left ventricular noncompaction presenting during childhood [Abstract]. J Am Coll Cardiol 37(Suppl A):462A

    Google Scholar 

  15. Dettman RW, Denetclaw W, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193:169–181

    Article  CAS  PubMed  Google Scholar 

  16. Eisenberg LM, Moreno R, Markwald RR (2005) Multiple stem cell populations contribute to the formation of the myocardium. Ann N Y Acad Sci 1047:38–49

    Article  CAS  PubMed  Google Scholar 

  17. Engberding R, Bender F (1984) Echokardiographischer Nachweis persistierender myokardialer Sinusoide. Z Kardiol 73:786–788

    CAS  PubMed  Google Scholar 

  18. Finsterer J, Stollberger C (2006) Cardiac MRI versus echocardiography in assessing noncompaction in children without neuromuscular disease. Pediatr Radiol 36:720–721

    Article  PubMed  Google Scholar 

  19. Finsterer J, Stollberger C, Blazek G (2006) Neuromuscular implications in left ventricular hypertrabeculation/noncompaction. Int J Cardiol 110:288–300

    Article  PubMed  Google Scholar 

  20. Finsterer J, Stollberger C, Feichtinger H (2002) Histological appearance of left ventricular hypertrabeculations/noncompaction. Cardiology 98:162–164

    Article  PubMed  Google Scholar 

  21. Freedom RM (1995) Pulmonary atresia and intact ventricular septum. In: Emmanouilides GC, Riemenschneider TA, Allen HD, Gutgesell HP (eds) Moss and Adams Heart Disease in Infants, Children, and Adolescents, 5th edn. Williams & Wilkins, Baltimore, pp 962–983

    Google Scholar 

  22. Freedom RM, Benson LN (1995) Hypoplastic left heart syndrome. In: Emmanouilides GC, Riemenschneider TA, Allen HD, Gutgesell HP (eds) Moss and Adams Heart Disease in Infants, Children, and Adolescents, 5th edn. Williams & Wilkins, Baltimore, pp 1133–1153

    Google Scholar 

  23. Gittenberger-de Groot AC, Bartelings MM, de Ruiter MC, Poelmann RE (2005) Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res 57:169–176

    Article  PubMed  Google Scholar 

  24. Hamamichi Y, Ichida F, Hashimoto I, et al. (2001) Isolated noncompaction of the ventricular myocardium: ultrafast computer tomography and magnetic resonance imaging. Int J Cardiovasc Imaging 17:305–314

    Article  CAS  PubMed  Google Scholar 

  25. Harvey RP (2002) Patterning the vertebrate heart. Nat Rev Genet 3:544–556

    Article  CAS  PubMed  Google Scholar 

  26. Hook S, Ratliff NB, Rosenkranz E, Sterba R (1996) Isolated noncompaction of the ventricular myocardium. Pediatr Cardiol 17:43–45

    CAS  PubMed  Google Scholar 

  27. Ichida F, Hamamichi Y, Miyawaki T, et al. (1999) Clinical features of isolated noncompaction of the ventricular myocardium: Long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol 34:233–240

    Article  CAS  PubMed  Google Scholar 

  28. Ichida F, Tsubata S, Bowler KR, et al. (2001) Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103:1256–1263

    CAS  PubMed  Google Scholar 

  29. Jenni R, Oechslin E, Schneider, Attenhofer JC, Kaufmann PA (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular noncompaction: a step towards classification as a distinct cardiomyopathy. Heart 86:666–671

    Article  CAS  PubMed  Google Scholar 

  30. Jenni R, Wyss CA, Oechslin EN, Kaufmann PA (2002) Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. J Am Coll Cardiol 39:450–454

    Article  PubMed  Google Scholar 

  31. Junga G, Kneifel S, von Smekal A, Steinert H, Bauersfeld U (1999) Myocardial ischemia in children with isolated ventricular non-compaction. Eur Heart J 20:910–916

    Article  CAS  PubMed  Google Scholar 

  32. Khan IA, Biddle WP, Najeed SA, et al. (2003) Isolated noncompaction cardiomyopathy presenting with paroxysmal supraventricular tachycardia—case report and literature review. Angiology 54:243–250

    Article  PubMed  Google Scholar 

  33. King T, Bland Y, Webb S, Barton S, Brown NA (2002) Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev Dyn 225:212–215

    Article  CAS  PubMed  Google Scholar 

  34. Koo BK, Choi SD, Ha JW, et al. (2002) Isolated noncompaction of the ventricular myocardium: contrast echocardiographic findings and review of the literature. Echocardiography 19:153–156

    Article  PubMed  Google Scholar 

  35. Kurosaki K, Ikeda U, Hojo Y, et al. (1999) Familial noncompaction of the left ventricular myocardium. Cardiology 91:69–72

    Article  CAS  PubMed  Google Scholar 

  36. Lee KF, Simon H, Chen H, et al. (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398

    Article  CAS  PubMed  Google Scholar 

  37. Lengyel M (2002) Isolated left ventricular noncompaction—first description in a Hungarian patient. Orv Hetail 143:1651–1653

    Google Scholar 

  38. Lewis FT (1904) The question of sinusoids. Anat Anz 25:261–279

    Google Scholar 

  39. Maltagliati A, Pepi M (2000) Isolated noncompaction of the myocardium: multiplane transesophageal echocardiography diagnosis in an adult. J Am Soc Echocardiogr 13:1047–1049

    Article  CAS  PubMed  Google Scholar 

  40. Mandel K, Grunebaum E, Benson L (2001) Noncompaction of the myocardium associated with Roifman syndrome. Cardiol Young 11:240–243

    Article  CAS  PubMed  Google Scholar 

  41. Matsuda M, Tsukahara M, Kondoh O, Mito H (1999) Familial isolated noncompaction of ventricular myocardium. J Hum Genet 44:126–128

    Article  CAS  PubMed  Google Scholar 

  42. Mizuno Y, Thompson TG, Guyon JR, et al. (2001) Desmuslin, an intermediate filament protein that interacts with alpha-dystrobrevin and desmin. Proc Natl Acad Sci USA 98:6156–6161

    Article  CAS  PubMed  Google Scholar 

  43. Oechslin EN, Jost CH, Rojas JR, Kaufmann PA, Jenni R (2000) Long-term follow-up of 34 adults with isolated left ventricular noncompaction: A distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36:4493–4500

    Article  Google Scholar 

  44. Pauli RM, Schreib-Wixted S, Cripe L, Izumo S, Sekhon GS (1999) Ventricular noncompaction and distal chromosome 5q deletion. Am J Med Genet 85:419–423

    Article  CAS  PubMed  Google Scholar 

  45. Pignatelli RH, McMahon CJ, Dreyer WJ, et al. (2004) Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108:2672–2678

    Article  Google Scholar 

  46. Rigopoulos A, Rizos IK, Aggeli C, et al. (2002) Isolated left ventricular noncompaction: an unclassified cardiomyopathy with severe prognosis in adults. Cardiology 98:25–32

    Article  PubMed  Google Scholar 

  47. Ritter M, Oechslin E, Sutsch G, et al. (1997) Isolated noncompaction of the myocardium in adults. Mayo Clinic Proc 72:26–31

    Article  CAS  Google Scholar 

  48. Sadoulet-Puccio HM, Feener CA, Schaid DJ, et al. (1997) The genomic organization of human dystrobrevin. Neurogenetics 1:37–42

    Article  CAS  PubMed  Google Scholar 

  49. Schultheiss TM, Xydas S, Lassar AB (1995) Induction of avian cardiac morphogenesis by anterior endoderm. Development 121:4203–4214

    CAS  PubMed  Google Scholar 

  50. Senior R (2002) Left ventricular contrast echocardiography: role for evaluation of function and structure. Echocardiography 19:615–620

    PubMed  Google Scholar 

  51. Soler R, Rodriguez E, Monserrat L, Avarez N (2002) MRI of subendocardial perfusion deficits in isolated left ventricular noncompaction. J Comput Assist Tomogr 26:373–375

    Article  PubMed  Google Scholar 

  52. Soni A, LeLorier P (2005) Sudden death in nondilated cardiomyopathies: pathophysiology and prevention. Curr Heart Fail Rep 2:118–123

    Article  PubMed  Google Scholar 

  53. Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407:221–226

    Article  CAS  PubMed  Google Scholar 

  54. Stamou SC, Lefrak EA, Athari FC, Burton NA, Massimiano PS (2004) Heart transplantation in a patient with isolated noncompaction of the left ventricular myocardium. Ann Thorac Surg 77:1806–1608

    Article  PubMed  Google Scholar 

  55. Stollberger C, Finsterer J (2004) Left ventricular hypertrabeculation/noncompaction. J Am Soc Echocardiogr 17:91–100

    Article  PubMed  Google Scholar 

  56. Stollberger C, Finsterer J (2004) Thrombi in left ventricular hypertrabeculation/noncompaction—review of the literature. Acta Cardiol 59:341–344

    Article  PubMed  Google Scholar 

  57. Stollberger C, Finsterer J, Blazek G (2002) Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am J Cardiol 90:899–902

    Article  PubMed  Google Scholar 

  58. Stollberger C, Finsterer J, Blazek G, Bittner RE (1996) Left ventricular non-compaction in a patient with Becker’s muscular dystrophy. Heart 76:380

    CAS  PubMed  Google Scholar 

  59. Stollberger C, Winkler-Dworak M, Blazek G, Finsterer J (2006) Prognosis of left ventricular hypertrabeculation/noncompaction is dependent on cardiac and neuromuscular comorbidity. Int J Cardiol

  60. Toyono M, Kondo C, Nakajima Y, et al. (2001) Effects of carvedilol on left ventricular function, mass, and scintigraphic findings in isolated left ventricular non-compaction. Heart 86:E4–E6

    Article  CAS  PubMed  Google Scholar 

  61. Valdes-Dapena M, Gilbert-Barness E (2002) Cardiovascular causes for sudden infant death. Pediatr Pathol Mol Med 21:195–211

    Article  PubMed  Google Scholar 

  62. Virágh S, Challice CE (1981) The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168

    Article  PubMed  Google Scholar 

  63. Vrancken-Peeters MPFM, Gittenberger-de Groot AC, Mentink MMT, Poelmann RE (1999) Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial–mesenchymal transformation of the epicardium. Anat Embryol 199:367–378

    Article  CAS  PubMed  Google Scholar 

  64. Vrancken Peeters MPFM, Gittenberger-de Groot AC, Mentink MMT, et al. (1997) The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev Dyn 208:338–348

    Article  CAS  PubMed  Google Scholar 

  65. Weiford BC, Subbarao VD, Mulhern KM (2004) Noncompaction of the ventricular myocardium. Circulation 109:2965–2971

    Article  PubMed  Google Scholar 

  66. Wong JA, Boflinger MK (1997) Noncompaction of the ventricular myocardium in Melnick–Needles syndrome. Am J Med Genet 71:72–75

    Article  CAS  PubMed  Google Scholar 

  67. Yasukawa K, Terai M, Honda A, Kohno Y (2001) Isolated noncompaction of ventricular myocardium associated with fatal ventricular fibrillation. Pediatr Cardiol 22:512–514

    Article  CAS  PubMed  Google Scholar 

  68. Zambrano E, Marshalko SJ, Jaffe CC, Hui P (2002) Isolated noncompaction of the ventricular myocardium: clinical and molecular aspects of a rare cardiomyopathy. Lab Invest 82:117–122

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Bartram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartram, U., Bauer, J. & Schranz, D. Primary Noncompaction of the Ventricular Myocardium from the Morphogenetic Standpoint. Pediatr Cardiol 28, 325–332 (2007). https://doi.org/10.1007/s00246-006-0054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-006-0054-8

Keywords

Navigation