Skip to main content
Log in

Stochastic Optimal Transport with at Most Quadratic Growth Cost

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider a class of stochastic optimal transport, SOT for short, with given two endpoint marginals in the case where a cost function exhibits at most quadratic growth. We first study the upper and lower estimates, the short-time asymptotics, the zero-noise limits, and the explosion rate as time goes to infinity of SOT. We also show that the value function of SOT is equal to zero or infinity in the case where a cost function exhibits less than linear growth. As a by-product, we characterize the finiteness of the value function of SOT by that of the Monge–Kantorovich problem. As an application, we show the existence of a continuous semimartingale, with given initial and terminal distributions, of which the drift vector is rth integrable for \(r\in [1,2)\). We also consider the same problem for Schrödinger’s problem where \(r=2\). This paper is a continuation of our previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, S., Dirr, N., Peletier, M.A., Zimmer, J.: From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307, 791–815 (2011)

    Article  MathSciNet  Google Scholar 

  2. Aronson, D.G.: Bounds on the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967)

    Article  MathSciNet  Google Scholar 

  3. Bernstein, S.: Sur les liaisons entre les grandeurs alétoires. Verh. des intern. Mathematikerkongr. Zurich 1, 288–309 (1932)

    Google Scholar 

  4. Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: On the Ambrosio-Figalli-Trevisan superposition principle for probability solutions to Fokker-Planck-Kolmogorov equations. J. Dyn. Differ. Equ. 33, 715–739 (2021)

    Article  MathSciNet  Google Scholar 

  5. Conforti, G., Tamanini, L.: A formula for the time derivative of the entropic cost and applications. J. Func. Anal. 280, 1–48 (2021)

    Article  MathSciNet  Google Scholar 

  6. Csiszar, I.: I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3, 146–158 (1975)

    Article  MathSciNet  Google Scholar 

  7. Dai Pra, P.: A stochastic control approach to reciprocal diffusion processes. Appl. Math. Optim. 23, 313–329 (1991)

    Article  MathSciNet  Google Scholar 

  8. Duong, M.H., Laschos, V., Renger, M.: Wasserstein gradient flows from large deviations of many-particle limits. ESAIM Control Optim. Calc. Var. 19, 1166–1188 (2013). Erratum at www.wias-berlin.de/people/renger/Erratum/DLR2015ErratumFinal.pdf

  9. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    Book  Google Scholar 

  10. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer, New York (2006)

    Google Scholar 

  11. Föllmer, H.: Random fields and diffusion processes. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint-Flour XV-XVII, 1985–1987. Lecture Notes in Math, vol. 1362, pp. 101–203. Springer, Berlin (1988)

  12. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland/Kodansha, Tokyo (2014)

    Google Scholar 

  13. Jamison, B.: The Markov process of Schrödinger. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32, 323–331 (1975)

    Article  MathSciNet  Google Scholar 

  14. Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. Special Issue on optimal transport and applications. Discret. Contin. Dyn. Syst. 34, 1533–1574 (2014)

    Article  Google Scholar 

  15. Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes. Probab. Theory Relat. Fields 129, 245–260 (2004)

    Article  MathSciNet  Google Scholar 

  16. Mikami, T.: Marginal problem for semimartingales via duality. In: Giga, Y., Ishii, K., Koike, S., Ozawa, T., Yamada, N. (eds.) International Conference for the 25th Anniversary of Viscosity Solutions, Gakuto International Series. Mathematical Sciences and Applications, vol. 30, pp. 133–152. Gakkotosho, Tokyo (2008)

  17. Mikami, T.: Optimal transportation problem as stochastic mechanics. In: Selected Papers on Probability and Statistics, Amer. Math. Soc. Transl. Ser. 2, 227, pp. 75–94. Amer. Math. Soc., Providence (2009)

  18. Mikami, T.: Two end points marginal problem by stochastic optimal transportation. SIAM J. Control Optim. 53, 2449–2461 (2015)

    Article  MathSciNet  Google Scholar 

  19. Mikami, T.: Regularity of Schrödinger’s functional equation and mean field PDEs for h-path processes. Osaka J. Math. 56, 831–842 (2019)

    MathSciNet  Google Scholar 

  20. Mikami, T.: Regularity of Schrödinger’s functional equation in the weak topology and moment measures. J. Math. Soc. Jpn. 73, 99–123 (2021)

    Article  Google Scholar 

  21. Mikami, T.: Stochastic optimal transport revisited. SN Partial Differ. Equ. Appl. 2(1), 5 (2021)

    Article  MathSciNet  Google Scholar 

  22. Mikami, T.: Stochastic Optimal Transportation: Stochastic Control with Fixed Marginals. Springer Briefs in Mathematics. Springer, Singapore (2021)

    Book  Google Scholar 

  23. Mikami, T., Thieullen, M.: Duality theorem for stochastic optimal control problem. Stoch. Process. Appl. 113, 1815–1835 (2006)

    Article  MathSciNet  Google Scholar 

  24. Mikami, T., Yamamoto, H.: A remark on the Lagrangian formulation of optimal transport with a non-convex cost. To appear in Pure Appl. Funct. Anal.

  25. Nisio, M: On a nonlinear semigroup associated with stochastic optimal control and its excessive majorant. In: Probability theory (Papers, VIIth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1976), Banach Center Publ. 5, pp. 175–202. PWN—Polish Scientific Publishers, Warsaw (1979)

  26. Nisio, M.: Stochastic Control Theory: Dynamic Programming Principle. Springer, Japan (2015)

    Book  Google Scholar 

  27. Pal, S.: On the difference between entropic cost and the optimal transport cost. To appear in Ann. Appl. Probab.

  28. Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems, vol. I: Theory, vol. II: Application. Springer, Heidelberg (1998)

    Google Scholar 

  29. Röckner, M., Xie, L., Zhang, X.: Superposition principle for non-local Fokker-Planck-Kolmogorov operators. Probab. Theory Relat. Fields 178(3–4), 699–733 (2020)

    Article  MathSciNet  Google Scholar 

  30. Rüschendorf, L., Thomsen, W.: Note on the Schrödinger equation and \(I\)-projections. Stat. Probab. Lett. 17, 369–375 (1993)

    Article  Google Scholar 

  31. Schrödinger, E.: Ueber die Umkehrung der Naturgesetze. Sitz. Ber. der Preuss. Akad. Wissen., Berlin, Phys. Math. 144–153 (1931)

  32. Tan, X., Touzi, N.: Optimal transportation under controlled stochastic dynamics. Ann. Probab. 41, 3201–3240 (2013)

    Article  MathSciNet  Google Scholar 

  33. Schrödinger, E.: Théorie relativiste de l’electron et l’interprétation de la mécanique quantique. Ann. Inst. H. Poincaré 2, 269–310 (1932)

    MathSciNet  Google Scholar 

  34. Sheu, S.J.: Some estimates of the transition density of a nondegenerate diffusion Markov process. Ann. Probab. 19, 538–561 (1991)

    Article  MathSciNet  Google Scholar 

  35. Trevisan, D.: Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21(22), 41 (2016)

    MathSciNet  Google Scholar 

  36. Veretennikov, Yu.A.: On polynomial mixing bounds for stochastic differential equations. Stoch. Process. Appl. 70, 115–127 (1997)

    Article  MathSciNet  Google Scholar 

  37. Veretennikov, Yu.A.: On polynomial mixing and convergence rate for stochastic difference and differential equations. Theory Probab. Appl. 45, 160–163 (2001)

    Article  MathSciNet  Google Scholar 

  38. Villani, C.: Optimal Transport: Old and New. Springer, Heidelberg (2008)

    Google Scholar 

  39. Zambrini, J.C.: Variational processes. In: Albeverio, S., Casati, G., Merlini, D. (eds.) Stochastic Processes in Classical and Quantum Systems, Ascona 1985. Lecture Notes in Phys, vol. 262, pp. 517–529. Springer, Heidelberg (1986)

  40. Zambrini, J.C.: Variational processes and stochastic versions of mechanics. J. Math. Phys. 27, 2307–2330 (1986)

    Article  MathSciNet  Google Scholar 

  41. Zambrini, J.C.: Stochastic mechanics according to E. Schrödinger. Phys. Rev. A 3(33), 1532–1548 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was partially supported by Japan Society for the Promotion of Science KAKENHI (Grant Number 19K03548).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Mikami.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of (17)

Appendix A: Proof of (17)

In this section we prove (17) in Remark 1.4 for readers’ convenience.

From Theorem 1.2, p(0, xTy) is positive and continuous under (A), and the following holds:

$$\begin{aligned} \varphi _2(0,x):=\int _{\mathbb {R}^d}p(0,x ;T,y) \nu _2(dy)>0, x\in \mathbb {R}^d. \end{aligned}$$

First, we prove the following:

$$\begin{aligned} q(y)dy=\frac{p(0,x_0 ;T,y)}{\varphi _2(0,x_0)}\nu _2(dy). \end{aligned}$$
(A.1)

Indeed, from (5),

$$\begin{aligned} \delta _{x_0}(dx)&=\nu _1(dx)\int _{\mathbb {R}^d}p(0,x ;T,y) \nu _2(dy)=\varphi _2(0,x)\nu _1(dx),\nonumber \\ q(y)dy&=\nu _2(dy)\int _{\mathbb {R}^d}p(0,x ;T,y)\nu _1(dx), \end{aligned}$$
(A.2)

from which the following holds:

$$\begin{aligned} q(y)dy&=\nu _2(dy)\int _{\mathbb {R}^d}p(0,x ;T,y) \frac{1}{\varphi _2(0,x)}\delta _{x_0}(dx). \end{aligned}$$

(A.1)–(A.2) imply the following:

$$\begin{aligned} \delta _{x_0}(dx)=\nu _1(dx)\varphi _2(0,x_0)\int _{\mathbb {R}^d} \frac{p(0,x ;T,y)q(y)}{p(0,x_0 ;T,y)}dy. \end{aligned}$$
(A.3)

(A.1) and (A.3) imply (17).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikami, T. Stochastic Optimal Transport with at Most Quadratic Growth Cost. Appl Math Optim 89, 70 (2024). https://doi.org/10.1007/s00245-024-10141-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-024-10141-6

Keywords

Mathematics Subject Classification

Navigation