Skip to main content
Log in

Existence of Controls Insensitizing the Rotational of the Solution of the Navier–Stokes System Having a Vanishing Component

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper we study an insensitizing control problem for the Navier–Stokes system. The novelty is that we insensitize the rotational of the solution using controls with one component fixed at zero. This problem can be formulated as a null controllability problem for a nonlinear cascade system for which we follow the usual duality approach. First, we prove a suitable Carleman inequality for a system coupling two Stokes like equations, which leads to the null controllability at any positive time. Finally, we deduce a local null controllability result for the cascade system by a local inverse argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lions, J.-L.: Sentinelles pour les systèmes distribués à domées incomplètes (Sentinels for Distributed Systems with Incomplete Data), vol. 21. Masson, Paris (1992)

    Google Scholar 

  2. Guyon, E., Hulin, J.-P., Petit, L., Mitescu, C.: Physical Hydrodynamics. Oxford University Press, Oxford (2015)

    Book  MATH  Google Scholar 

  3. Yacilom, A.: Turbulence. By J. O. HINZE. McGraw-Hill, J. Fluid Mech. 80.3, 605–606 (1977)

  4. Sicot, C., Devinant, P., Loyer, S., Hureau, J.: Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms. J Wind Eng. Ind. Aerodyn. 96(8–9), 1320–1331 (2008)

    Article  Google Scholar 

  5. Bodart, O., Fabre, C.: Controls insensitizing the norm of the solutions of a semilinear heat equations. J. Math. Anal. 195, 658–683 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lions, J.-L.: Quelques notions dans l’analyse et le contrôole de systèmes à données incomplètes. In: Proceedings of the XIth Congress on Differential Equations and Applications/First Congress on Applied Mathematics, pp. 43–54 (1990)

  7. Tebou, L.: Some results on the controllability of coupled semilinear wave equations: the desensitizing control case. SIAM J. Control Optim. 49, 1221–1238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Teresa, L.: Insensitizing controls for a semilinear heat equation. Commun. Partial Differ. Equ. 25, 39–72 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fernández-Cara, E., Guerrero, S., Imanuvilov, O.-Y., Puel, J.-P.: Some controllability results for the N-dimensional Navier–Stokes and Boussinesq systems with N - 1 scalar controls. SIAM J. Control Optim. 45(1), 146–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coron, J.-M., Guerrero, S.: Local null controllability of the N-dimensional Stokes system with N-1 scalar controls. J. Differ. Equ. 246(7), 2908–2921 (2009)

    Article  MATH  Google Scholar 

  11. Carreño, N., Guerrero, S.: Null controllability of the N-dimensional Navier–Stokes system with N-1 scalar controls in an arbitrary control domain. J. Math. Fluid Mech. 15, 139–153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carreño. N.: Local controllability of the N-dimensional Boussinesq system with N - 1 scalar controls in an arbitrary control domain. Math. Control Relat. Fields 2 (2012)

  13. Coron, J.-M., Lissy, P.: Local null controllability of the three-dimensional Navier–Stokes system with a distributed control having two vanishing components. Invent. Math. 198, 833–880 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pérez-García, R.: Algunos resultados de control para algunos problemas parabólicos acoplados no lineales: controlabilidad y controles insensibilizantes. Lecture Notes, University of Sevilla (2004)

  15. Guerrero, S.: Controllability of systems of Stokes equations with one control force: existence of insensitizing controls. Ann. Inst. Henri Poincaré C 24(6), 1029–1054 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gueye, M.: Insensitizing controls for the Navier–Stokes equations. Ann. Inst. Henri Poincaré C 30(5), 825–844 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carreño, N., Gueye, M.: Insensitizing controls with one vanishing component for the Navier–Stokes system. J. Math. Pures Appl. 101(1), 27–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Teresa, L., Zuazua, E.: Identification of the class of initial data for the insensitizing control of the heat equation. Commun. Pure Appl. Anal. 8, 457–471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fursikov, A.V., Imanuvilov, O.-Y.: Controllability of Evolution Equations. Technical Report Lecture Notes. Seoul National University (1996)

  20. Imanuvilov, O.-Y.: Remarks on exact controllability for the Navier–Stokes equations. ESAIM Control Optim. Calc. Var. 6, 39–72 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Temam, R.: Navier–Stokes equations, theory and numerical analysis. Stud. Math. Appl. 2, 510 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Imanuvilov, O.-Y., Puel, J., Yamamoto, M.: Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin. Ann. Math. Ser. B 30(4), 333–378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ladyzhenskaya, O.: The mathematical theory of viscous incompressible flow. Gordon & Breach (1969)

  24. Solonnikov, V.: Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations. Amer. Math. Soc. Transl 75(2), 1–116 (1968)

    MATH  Google Scholar 

  25. Temam, R.: Behaviour at time t=0 of the solutions of semilinear evolutions equations. J. Differ. Equ. 43(1), 73–92 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Simon, J.: On the identification H=H’ in the Lions theorem and a related inaccuracy. Ricerche di Matematica 59(2), 245–255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fernández-Cara, E., González-Burgos, M., Guerrero, S., Puel, J.-P.: Null controllability of the heat equation with boundary Fourier conditions: the linear case. ESAIM Control Optim. Calc. Var. 12, 442–465 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal control. Contemporary Soviet Mathematics, Translated from Russian by V.M. Volosov (1987)

  29. Araruna, F.D., Fernández-Cara, E., Santos, M.C.: Stackelberg–Nash exact controllability for linear and semilinear parabolic equations. ESAIM: Control Optim. Calc. Var. 21(3), 835–856 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Araruna, F.D., Fernández-Cara, E., Guerrero, S., Santos, M.C.: New results on the Stackelberg–Nash exact control of linear parabolic equations. Syst. Control Lett. 104, 78–85 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Araruna, F.D., Fernández-Cara, E., da Silva, L.C.: Hierarchical exact controllability of semilinear parabolic equations with distributed and boundary controls. Commun. Contemp. Math. 22(07), 1950034 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guillén-González, F., Marques-Lopes, F., Rojas-Medar, M.: On the approximate controllability of Stackelberg–Nash strategies for Stokes equations. Proc. Am. Math. Soc. 141(5), 1759–1773 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guerrero, S., Montoya, C.: Local null controllability of the N-dimensional Navier–Stokes system with nonlinear Navier-slip boundary conditions and N-1 scalar controls. J. Math. Pures Appl. 113, 37–69 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Prada, J.: Existence of desensitizing controls for the Boussinesq system using certain observation functional and with two components fixed at zero, in preparation

  35. Carreño, N., Guerrero, S., Gueye, M.: Insensitizing controls with two vanishing components for the three-dimensional Boussinesq system. ESAIM: Control Optim. Calc. Var. 21, 73–100 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Carreño, N.: Insensitizing controls for the Boussinesq system with no control on the temperature equation. Adv. Differential Equations 22(3/4), 235–258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fernández-Cara, E., García, G.C., Osses, A.: Insensitizing controls for a large-scale ocean circulation model. C. R. Math. 337(4), 265–270 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Havôarneanu, T., Popa, C., Sritharan, S.: Exact internal controllability for the two-dimensional magnetohydrodynamic equations. SIAM J. Control Optim. 46(5), 1802–1830 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Badra, M.: Local controllability to trajectories of the magnetohydrodynamic equations. J. Math. Fluid Mech. 16, 631–660 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Imanuvilov, O.-Y., Yamamoto, M.: Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci. 39(2), 227–274 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fernández-Cara, E., Guerrero, S.: Global Carleman estimates for solutions of parabolic systems defined by transposition and some applications to controllability. Appl. Math. Res. Express 75090, 1–31 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This study is supported by ANID FONDECYT 1211292, “Beca Doctorado Nacional 2020” of Agencia Nacional de Investigación y Desarrollo (ANID) in Chile and “Beca de Incentivo a la Iniciación Científica 2021” of Universidad Técnica Federico Santa María (PIIC - UTFSM, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Prada.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 2.3

Before we begin, we present a Carleman estimate which is proved in [11], which we are going to use in its proof, and it is as follow:

Lemma A.1

There exists a constant \(\lambda _{0}\), such that, for any \(\lambda > \lambda _{0}\) there exist two constants \(C(\lambda )>0\) and \(s_{0}(\lambda )>0\) such that for any \(i \in \{1,\dots ,N \}\), any \(g\in L^{2}(Q)^{N}\) and any \(u_{0}\in H\), the solution of

$$\begin{aligned} \left\{ \begin{array}{ll} u_{t}-\Delta u+\nabla p = g, \ \ \nabla \cdot u = 0 &{} \text { in } Q,\\ u = 0 &{} \text { on } \Sigma ,\\ u(0)=u_{0}&{} \text { in } \Omega , \end{array} \right. \end{aligned}$$
(A.1)

satisfies

$$\begin{aligned}{} & {} s^{4}\iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{4} | u|^{2} \textrm{d}x\,\textrm{d}t} \le C\left( \iint \limits _{Q}{ e^{-11s\alpha ^{*}} | g |^{2} \textrm{d}x\,\textrm{d}t} \right. \\{} & {} \left. +s^{7} \sum _{\begin{array}{c} j=1\\ j\ne i \end{array}}^{N}{\iint \limits _{\omega \times (0,T)}{e^{-2s\hat{\alpha }-11s\alpha ^{*}}(\hat{\xi })^{7} | u_{j} |^{2} \textrm{d}x\,\textrm{d}t}}\right) , \end{aligned}$$

for every \(s\ge s_{0}\).

We are going to develop here the duality method introduced in [40] in the context of the heat equation. The same argument has already been used in the context of the heat equation with nonhomogeneous Robin boundary conditions in [27] and in the context of the heat equation with right-hand side belonging to \(L^{2}(0,T;H^{-2}(\Omega ))\cap H^{-1}(0,T;L^{2}(\Omega ))\), wich only permits to talk about solutions in \(L^{2}(Q)\); this is explained with detail in [41].

Proof

First, we view u as a solution by transposition of (2.3). This means that u is the unique function in \(L^{2}(Q)^{N}\) satisfying

$$\begin{aligned} \iint \limits _{Q}{u g \textrm{d}x\,\textrm{d}t} = \iint \limits _{Q}{f_{0} \phi \textrm{d}x\,\textrm{d}t} - \iint \limits _{Q}{f_{1}\cdot \nabla \phi \textrm{d}x\,\textrm{d}t} + \int \limits _{\Omega }{u^{0} \phi (0) \textrm{d}x}, \quad \forall g \in L^{2}(Q)^{N},\nonumber \\ \end{aligned}$$
(A.2)

where we have denoted by \(\phi \in L^{2}(0,T;H^{2}(\Omega )^{N}\cap V)\cap H^{1}(0,T;L^{2}(\Omega )^{N})\), together with \(p_{\phi }\), the (strong) solution of the following problem:

$$\begin{aligned} \left\{ \begin{array}{lll} -\phi _{t}-\Delta \phi + \nabla p_{\phi } = g,\ \ \nabla \cdot \phi = 0 &{} \text { in } Q,\\ \phi = 0 &{} \text { on } \Sigma ,\\ \phi (T)=0 &{}\text { in } \Omega . \end{array} \right. \end{aligned}$$
(A.3)

Let us first get an estimate of the lower order term in the left-hand side of (2.4), i.e.

$$\begin{aligned} s^{4}\iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{4}| u |^{2}\textrm{d}x\,\textrm{d}t}. \end{aligned}$$
(A.4)

Let us introduce the space

$$\begin{aligned} Z_{0}= \{ (\phi , p_{\phi })\in C^{2}(\overline{Q})\times C^{1}(\overline{Q}): \phi = 0 \text { on } \Sigma \text{ and } \nabla \cdot \phi = 0 \text{ in } \Omega \} \end{aligned}$$

and the norm \(\Vert \cdot \Vert _{Z}\), with

$$\begin{aligned} \Vert (\varrho , p_{\varrho })\Vert _{Z}^{2}= & {} \iint \limits _{Q}{ e^{-11s\alpha ^{*}} | \varrho _{t}- \Delta \varrho +\nabla p_{\varrho } |^{2} \textrm{d}x\,\textrm{d}t} \\ {}{} & {} + s^{7} \iint \limits _{\omega \times (0,T)}{e^{-2s\hat{\alpha }-11s\alpha ^{*}} (\hat{\xi })^{7} | (\varrho _{1},0)|^{2} \textrm{d}x\,\textrm{d}t}, \end{aligned}$$

for all \((\varrho ,p_{\varrho })\in Z_{0}\). Due to Lemma A.1, \(\Vert \cdot \Vert _{Z}\) is indeed a norm in \(Z_{0}\). Let Z be the completion of \(Z_{0}\) for the norm \(\Vert \cdot \Vert _{Z}\). Then Z is a Hilbert space for the scalar product \((\cdot , \cdot )_{Z}\), with

$$\begin{aligned} \left( ( \sigma , p_{\sigma }),(\gamma , p_{\gamma }) \right) _{Z} =&\iint \limits _{Q}{e^{-11s \alpha ^{*}}(\sigma _{t}-\Delta \sigma + \nabla p_{\sigma })(\gamma _{t} - \Delta \gamma + \nabla p_{\gamma }) \textrm{d}x\,\textrm{d}t}\\&+s^{7}\iint \limits _{\omega \times (0,T)}{e^{-2s\hat{\alpha }-11s\alpha ^{*}}(\hat{\xi })^{7}\sigma _{1}\gamma _{1}\textrm{d}x\,\textrm{d}t}. \end{aligned}$$

Then, using Lax Milgram’s Lemma there is a unique solution \((\bar{\sigma },\bar{p}_{\bar{\sigma }})\in Z \) such that

$$\begin{aligned} \left( (\bar{\sigma },\bar{p}_{\bar{\sigma }}),(\sigma ,p_{\sigma })\right) _{Z}=l(\sigma ,p_{\sigma }), \quad \forall (\sigma ,p_{\sigma })\in Z, \end{aligned}$$
(A.5)

where

$$\begin{aligned} l(\sigma ,p_{\sigma })=s^{4}\iint \limits _{Q}{e^{-13s\alpha ^{*}} (\xi ^{*})^{4} u\sigma \textrm{d}x\,\textrm{d}t}. \end{aligned}$$

By virtue of Lemma A.1, one can easily check that \( l \in Z'.\)

We define:

$$\begin{aligned} \left\{ \begin{array}{ll} \hat{\phi } &{} = e^{-11s\alpha ^{*}}(\bar{\sigma }_{t}-\Delta \bar{\sigma }+\nabla \bar{p}_{\bar{\sigma }}),\\ \hat{v} &{} = -s^{7}e^{-2s\hat{\alpha }-11s\alpha ^{*}}(\bar{\sigma }_{1},0). \end{array} \right. \end{aligned}$$
(A.6)

Recall that \(\bar{\sigma } = (\bar{\sigma }_{1},\bar{\sigma }_{2})\). Then, \((\hat{\phi },\hat{v})\) is solution of (A.3) and such that

$$\begin{aligned} \Vert ( \bar{\sigma },\bar{p}_{\bar{\sigma }} )\Vert _{Z}^{2}=(( \bar{\sigma },\bar{p}_{\bar{\sigma }} ),( \bar{\sigma },\bar{p}_{\bar{\sigma }} ))_{Z}= l ( \bar{\sigma },\bar{p}_{\bar{\sigma }} ). \end{aligned}$$

Let us now take \(g=s^{4}e^{-13s\alpha ^{*}}(\xi ^{*})^{4}u + \hat{v}\mathbb {1}_{\omega }\) in (A.2). This gives

$$\begin{aligned} s^{4}\iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{4}|u|^{2} \textrm{d}x\,\textrm{d}t} = \iint \limits _{Q}{f_{0} \hat{\phi } \textrm{d}x\,\textrm{d}t}-\iint \limits _{Q}{f_{1}\cdot \nabla \hat{\phi } \textrm{d}x\,\textrm{d}t} -\iint \limits _{\omega \times (0,T)}{u\hat{v} \textrm{d}x\,\textrm{d}t}, \end{aligned}$$
(A.7)

(recall that \(\hat{v}\) and \(\hat{\phi }\) are given by (A.6)).

From (A.5), we obtain

$$\begin{aligned} \Vert ( \bar{\sigma },\bar{p}_{\bar{\sigma }} )\Vert _{Z}^{2}\le \Vert l \Vert _{Z'}\Vert ( \bar{\sigma },\bar{p}_{\bar{\sigma }} )\Vert _{Z}. \end{aligned}$$

Consequently,

$$\begin{aligned} \Vert ( \bar{\sigma },\bar{p}_{\bar{\sigma }} )\Vert _{Z}^{2}= & {} \iint \limits _{Q}{e^{11s\alpha ^{*}}|\hat{\phi }|^{2} \textrm{d}x\,\textrm{d}t}+s^{-7}\iint \limits _{\omega \times (0,T)}{e^{2s\hat{\alpha } + 11s\alpha ^{*}}|\hat{v}|^{2} \textrm{d}x\,\textrm{d}t} \nonumber \\{} & {} \le C s^{4} \iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{4}|u|^{2} \textrm{d}x\,\textrm{d}t}, \end{aligned}$$
(A.8)

for \(s\ge C=C(\Omega ,\omega ,T)>0\), since

$$\begin{aligned} \Vert l \Vert _{Z'}\le s^{2} \left( \iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{4}|u|^{2} \textrm{d}x\,\textrm{d}t}\right) ^{1/2}. \end{aligned}$$

Now, we multiply the equation satisfied by \(\hat{\phi }\) by \(s^{-7}e^{2s\hat{\alpha }+11s\alpha ^{*}} (\hat{\xi })^{-7}\hat{\phi }\) and we integrate in Q. After integration by parts, we get:

$$\begin{aligned}{} & {} s^{-7}\iint \limits _{Q}{e^{2s\hat{\alpha }+11s\alpha ^{*}} (\hat{\xi })^{-7} |\nabla \hat{\phi } |^{2} \textrm{d}x\,\textrm{d}t} = \dfrac{s^{-7}}{2}\iint \limits _{Q}{\dfrac{\partial }{\partial t}(e^{2s\hat{\alpha }+11s\alpha ^{*}} (\hat{\xi })^{-7})|\hat{\phi }|^{2} \textrm{d}x\,\textrm{d}t}\nonumber \\ {}{} & {} + s^{-3}\iint \limits _{Q}{ e^{2s\hat{\alpha }+6 s\alpha ^{*}} (\hat{\xi })^{-3} u \hat{\phi } \textrm{d}x\,\textrm{d}t} + s^{-7}\iint \limits _{\omega \times (0,T)}{ e^{2s\hat{\alpha }+11s\alpha ^{*}} (\hat{\xi })^{-7} \hat{v}\hat{\phi } \textrm{d}x\,\textrm{d}t}. \end{aligned}$$
(A.9)

Using Holder’s inequality and Young’s inequality in the last two terms of the right-hand side of (A.9), we have

$$\begin{aligned}&s^{-7}\iint \limits _{Q}{e^{2s\hat{\alpha } + 11s\alpha ^{*}} (\hat{\xi })^{-7} |\nabla \hat{\phi } |^{2} \textrm{d}x\,\textrm{d}t} \le C \left( \iint \limits _{Q}{e^{11s\alpha ^{*}}|\hat{\phi }|^{2}\textrm{d}x\,\textrm{d}t}\right. \\&\left. + s^{-7}\iint \limits _{\omega \times (0,T)}{e^{2s\hat{\alpha }+11s\alpha ^{*}}|\hat{v}|^{2} \textrm{d}x\,\textrm{d}t} + s^{4} \iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{4}|u|^{2} \textrm{d}x\,\textrm{d}t} \right) , \end{aligned}$$

where we have taken \(s\ge C.\) This inequality, together with (A.8), provides

$$\begin{aligned} \iint \limits _{Q}{e^{11s\alpha ^{*}}|\hat{\phi }|^{2}\textrm{d}x\,\textrm{d}t} + s^{-7}\iint \limits _{Q}{e^{2s\hat{\alpha }+11s\alpha ^{*}} (\hat{\xi })^{-7} |\nabla \hat{\phi } |^{2} \textrm{d}x\,\textrm{d}t} \nonumber \\ + s^{-7}\iint \limits _{\omega \times (0,T)}{e^{2s\hat{\alpha }+ 11s\alpha ^{*}}|\hat{v}|^{2} \textrm{d}x\,\textrm{d}t} \le C s^{4} \iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{4}| u |^{2} \textrm{d}x\,\textrm{d}t}. \end{aligned}$$
(A.10)

A combination of this inequality with (A.7) yields the following estimate:

$$\begin{aligned} s^{4}\iint \limits _{Q}{e^{-13 s \alpha ^{*}} (\xi ^{*})^{4} | u |^{2}\textrm{d}x\,\textrm{d}t} \le&C\left( \iint \limits _{Q}{e^{-11 s \alpha ^{*}} | f_{0}|^{2}\textrm{d}x\,\textrm{d}t} + s^{7}\iint \limits _{Q}{e^{-11s\alpha ^{*}} (\hat{\xi })^{7}| f_{1}|^{2} \textrm{d}x\,\textrm{d}t} \right. \nonumber \\&\left. + s^{7}\sum _{\begin{array}{c} j=1 \\ j\ne i \end{array}}^{N}\ \iint \limits _{\omega \times (0,T)}{e^{-2s\hat{\alpha }-11s\alpha ^{*}}(\hat{\xi })^{7} | u_{j}|^{2} \textrm{d}x\,\textrm{d}t} \right) , \end{aligned}$$
(A.11)

Let us now show that the term associated with \(\nabla u\) can also be bounded in the same way. To this end, we multiply the equation of u by

$$\begin{aligned} s^{3}e^{-13s\alpha ^{*}}(\xi ^{*})^{3-1/m} \end{aligned}$$

and we obtain

$$\begin{aligned}&\dfrac{s^{3}}{2}\iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{3-1/m}\dfrac{\partial }{\partial t} | u |^{2} \textrm{d}x\,\textrm{d}t} + s^{3}\iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{3-1/m}|\nabla u |^{2} \textrm{d}x\,\textrm{d}t}\nonumber \\ =&s^{3}\iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{3-1/m}f_{0} u \textrm{d}x\,\textrm{d}t}- s^{3}\iint \limits _{Q}{e^{-13s\alpha ^{*}}(\xi ^{*})^{3-1/m}f_{1} \cdot \nabla u \textrm{d}x\,\textrm{d}t}. \end{aligned}$$
(A.12)

Now, integrating by parts with respect to t in the first integral of the left-hand side of (A.12) and using that

$$\begin{aligned} ( e^{-13s\alpha ^{*}}(\xi ^{*})^{3-1/m} )_{t} \le C s e^{-13s\alpha ^{*}}(\xi ^{*})^{4}, \quad s \ge C, \end{aligned}$$

we have at this moment,

$$\begin{aligned}&s^{4}\iint \limits _{Q}{e^{-13 s \alpha ^{*}} (\xi ^{*})^{4} | u |^{2}\textrm{d}x\,\textrm{d}t}+s^{3}\iint \limits _{Q}{e^{-13 s \alpha ^{*}}(\xi ^{*})^{3-1/m} |\nabla u |^{2}\textrm{d}x\,\textrm{d}t}\nonumber \\&\le C\left( \iint \limits _{Q}{e^{-11 s \alpha ^{*}} | f_{0}|^{2}\textrm{d}x\,\textrm{d}t} \right. \nonumber \\&\left. + s^{7}\iint \limits _{Q}{e^{-11s\alpha ^{*}} (\hat{\xi })^{7}| f_{1}|^{2} \textrm{d}x\,\textrm{d}t} \right. \nonumber \\&\left. + s^{7}\sum _{\begin{array}{c} j=1 \\ j\ne i \end{array}}^{N}\ \iint \limits _{\omega \times (0,T)}{e^{-2s\hat{\alpha }-11s\alpha ^{*}}(\hat{\xi })^{7} | u_{j}|^{2} \textrm{d}x\,\textrm{d}t} \right) , \end{aligned}$$
(A.13)

On the other hand, we consider

$$\begin{aligned} \tilde{u}:= s e^{-13/2s\alpha ^{*}}(\xi ^{*})^{1-1/m} u := \rho _{4}(t) u, \quad \tilde{h} := s e^{-13/2s\alpha ^{*}}(\xi ^{*})^{1-1/m} h:= \rho _{4}(t)h. \end{aligned}$$

Then, \((\tilde{u}, \tilde{h})\) satisfies the following system:

$$\begin{aligned} \left\{ \begin{array}{ll} -\tilde{u}_{t} - \Delta \tilde{u} + \nabla \tilde{h} = -(\rho _{4})_{t} u + \rho _{4} f_{0} + \rho _{4} \nabla \cdot f_{1}, \quad \nabla \cdot \tilde{u} = 0 &{} \text{ in } Q,\\ \tilde{u} = 0 &{} \text{ on } \Sigma ,\\ \tilde{u}(0) = 0 &{} \text{ in } \Omega . \end{array} \right. \end{aligned}$$
(A.14)

Then, we have that

$$\begin{aligned}&\Vert \tilde{u}\Vert _{L^{2}(0,T;H^{1}(\Omega )^{N})}^{2} + \Vert \tilde{h}\Vert _{L^{2}(Q)}^{2}\\&\quad \le C \left( \Vert \rho _{4} f_{0}\Vert _{L^{2}(Q)^{N}}^{2} + \Vert \rho _{4} f_{1} \Vert _{L^{2}(Q)^{N}}^{2} + \Vert (\rho _{4})_{t} u \Vert _{L^{2}(Q)^{N}}^{2} \right) . \end{aligned}$$

for some \(C>0.\) Then, since \(|(\rho _{4})_{t}|\le C s^2 e^{-13/2s\alpha ^{*}}(\xi ^{*})^{2} \), we can add the term associated with the pressure to the left-hand side of (A.13). Finally, we obtain (2.4).

\(\square \)

Appendix B: Proof of Proposition 2

In this occasion, we will prove the Carleman estimate of \(\psi \) following a method introduced in [10]. For simplicity of the proof, we will consider the case \(N=2\) and \(i=2.\)

Proof

First, we apply the divergence operator to equation associated with \(\psi \) to obtain

$$\begin{aligned} \Delta h = \nabla \cdot g^{\psi } = 0 \text { in } Q. \end{aligned}$$

Then, applying the operator \(\nabla \nabla \nabla \Delta ^{2} (\cdot )\) to the equation satisfied be \(\psi _{1},\) we have:

$$\begin{aligned} (\nabla \nabla \nabla \Delta ^{2}\psi _{1})_{t}- \Delta (\nabla \nabla \nabla \Delta ^{2}\psi _{1})=\nabla \nabla \nabla \Delta ^{2}g_{1}^{\psi }. \end{aligned}$$

Thus, we can apply Lemma 2.1 to this equation to obtain

$$\begin{aligned}{} & {} \iint \limits _{Q}{e^{-10s\alpha } \bigg (s^{-1}\xi ^{-1}|\nabla \nabla \nabla \nabla \Delta ^{2}\psi _{1} |^{2}+s \xi |\nabla \nabla \nabla \Delta ^{2}\psi _{1}|^{2}\bigg ) \textrm{d}x\,\textrm{d}t}\nonumber \\{} & {} \quad \le C\Bigg ( \left\| s^{-1/4} e^{-5s\alpha } \xi ^{-1/4+1/m} \nabla \nabla \nabla \Delta ^{2}\psi _{1} \right\| _{L^{2}(\Sigma )^{8}}^{2} \nonumber \\{} & {} \quad +\left\| s^{-1/4}e^{-5s\alpha } \xi ^{-1/4}\nabla \nabla \nabla \Delta ^{2}\psi _{1} \right\| _{H^{1/4,1/2}(\Sigma )^{8}}^{2} \nonumber \\{} & {} \quad \left. + s\iint \limits _{\omega _{0}\times (0,T)}{e^{-10s\alpha }\xi |\nabla \nabla \nabla \Delta ^{2}\psi _{1}|^{2}\textrm{d}x\,\textrm{d}t}+\iint \limits _{Q}{e^{-10s\alpha } | \nabla ^{2} \Delta ^{2}g_{1}^{\psi }|^{2}\textrm{d}x\,\textrm{d}t} \right) , \nonumber \\ \end{aligned}$$
(B.1)

for every \(s\ge C.\)

We divide the rest of the proof in three steps:

  • In Step 1, we estimate globals integrals of \(\psi _{1}\) y \(\psi _{2}\) by the left-hand side of (B.1).

  • In Step 2, we deal with the boundary terms en (B.1).

  • In Step 3, we estimate all the local terms.

In the following, C denotes a constant depending only on \(\lambda \), \(\Omega \), \(\omega \), \(\mathcal {O}\) y \(\ell \).

Step 1

Estimate of \(\psi _{1}:\) Applying successively Lemma 2.2 with \(r=1\) and \(u:=\nabla \nabla \Delta ^{2}\psi _{1},\) \(r=3\) and \(u=\nabla \Delta ^2 \psi _{1},\) \(r=5\) and \(u=\Delta ^2 \psi _{1},\) and combining with (B.1), we get

(B.2)

for every \(s\ge C.\)

Estimate of \(\psi _{2}:\) Now, we would like to introduce in the left-hand side a term in \(\psi = (\psi _{1}, \psi _{2} )\). Actually, we are going to add the term \(\left\| s^{7/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{7/2}\psi \right\| _{L^{2}(0,T;H^{2}(\Omega )^{N})}\) to the left-hand side of (B.2).

Notice that, since \(\nabla \cdot \psi _{t} = 0 \) in Q,  we have for all \(t\in (0, T ):\)

$$\begin{aligned} \begin{aligned} \int \limits _{\Omega }{ |\partial _{2} (\psi _{2})_{t} (t)|^{2}\textrm{d}x} =&\int \limits _{\Omega }{ |\partial _{1}(\psi _{1})_{t}(t)|^{2}\textrm{d}x}\\ \le&\int \limits _{\Omega }{ |\nabla (\psi _{1})_{t}(t)|^{2} \textrm{d}x}. \end{aligned} \end{aligned}$$
(B.3)

Since \((\psi _{2})_{t}(t)|_{\partial \Omega } = 0\) and \(\Omega \) is bounded, also, using (B.3), we have

$$\begin{aligned} \int \limits _{\Omega }{ |(\psi _{2})_{t}(t) |^{2} \textrm{d}x}\le C \int \limits _{\Omega }{ | \nabla (\psi _{1})_{t}(t) |^{2} \textrm{d}x}. \end{aligned}$$

Then, we deduce

$$\begin{aligned} \left\| \psi _{t}(t)\right\| _{L^{2}(\Omega )^{N}}^{2} \le C \left\| \nabla (\psi _{1})_{t} (t) \right\| _{L^{2}(\Omega )^{N}}^{2}, \ \ \forall t\in (0,T). \end{aligned}$$
(B. 4)

Consider now the following Stokes system,

$$\begin{aligned} \left\{ \begin{array}{lll} -\Delta \psi +\nabla h = -\psi _{t} + g^{\psi } &{} \text { in } Q,\\ \nabla \cdot \psi = 0 &{} \text { in } Q,\\ \psi = 0 &{} \text { on } \partial \Omega , \end{array} \right. \end{aligned}$$
(B. 5)

then, using a regularity result of [21] for the stationary Stokes problem (B. 5), together with (B. 4), we obtain

$$\begin{aligned} \left\| \psi (t) \right\| _{H^{2}(\Omega )^{N}}^{2} \le C \left( \left\| \nabla (\psi _{1})_{t} (t) \right\| _{L^{2}(\Omega )^{N}}^{2} + \left\| g^{\psi } (t)\right\| _{L^{2}(\Omega )^{N}}^{2}\right) , \forall t\in (0,T). \end{aligned}$$
(B. 6)

Now, observe that using the divergence free condition and applying the laplacian operator to the equation associated with \(\psi _{1}\), we get that \((\Delta \psi _{1})_{t} = \Delta ^{2}\psi _{1} + \Delta g_{1}^{\psi }\) in Q. On the other hand, since \((\psi _{1})_{t} |_{\partial \Omega } = 0,\) we have

$$\begin{aligned} \left\| (\psi _{1})_{t} \right\| _{H^{2}(\Omega )}^{2} \le C \left\| \Delta (\psi _{1})_{t} \right\| _{L^{2}(\Omega )}. \end{aligned}$$
(B. 7)

Using (B. 7) in (B. 6), we obtain

$$\begin{aligned} \Vert \psi (t) \Vert _{H^{2}(\Omega )^{N}}^{2} \le&C \left( \Vert \Delta ^{2}\psi _{1}(t) \Vert _{L^{2}(\Omega )}^{2} + \Vert \Delta g^{\psi }(t) \Vert _{L^{2}(\Omega )^{N}}^{2} \right) , \forall t \in (0,T). \end{aligned}$$

Finally, since \(\alpha ^{*}\) and \(\xi ^{*}\) do not depend on the space variable x, we have that

$$\begin{aligned} s^{7}\int \limits _{0}^{T}{e^{-10s\alpha ^{*}}(\xi ^{*})^{7} \left\| \psi \right\| _{H^{2}(\Omega )^{N}}^{2} \textrm{d}t} \le&C s^{7} \left( \iint \limits _{Q}{e^{-10 s\alpha ^{*}} (\xi ^{*})^{7} | \Delta ^{2}\psi _{1} |^{2} \textrm{d}x\,\textrm{d}t} \right. \nonumber \\&\left. + \iint \limits _{Q}{e^{- 10 s\alpha ^{*}} (\xi ^{*})^{7} | \Delta g^{\psi } |^{2} \textrm{d}x\,\textrm{d}t} \right) . \end{aligned}$$
(B. 8)

Therefore, combining (B.2) and (B. 8) we get

(B.9)

for every \(s\ge C.\)

Step 2

In this step we treat the boundary terms in (B.9). We begin with the first one. Notice that the minimum of the weight functions \(e^{s\alpha }\) and \(\xi \) is reached at the boundary \(\partial \Omega ,\) where \(\alpha =\alpha ^{*}\) and \(\xi =\xi ^{*}\) do not depend on x. Since \(m \ge 14\), and using Young inequality, we obtain

$$\begin{aligned}&\left\| e^{-5s\alpha ^{*}} (\xi ^{*})^{-1/4+1/m}\nabla \nabla \nabla \Delta ^{2}\psi _{1} \right\| _{L^{2}(\Sigma )^{8}}^{2}\\ \le&C \left\| e^{-5s\alpha ^{*}}\nabla \nabla \nabla \Delta ^{2}\psi _{1} \right\| _{L^{2}(\Sigma )^{8}}^{2}\\ \le&C\left( s^{-1}\iint \limits _{Q}{e^{-10s\alpha } \xi ^{-1}|\nabla \nabla \nabla \nabla \Delta ^{2}\psi _{1}|^{2}\textrm{d}x\,\textrm{d}t}\right. \\&\left. + s \iint \limits _{Q}{e^{-10s\alpha } \xi | \nabla \nabla \nabla \Delta ^{2}\psi _{1}|^{2} \textrm{d}x\,\textrm{d}t}\right) . \end{aligned}$$

Therefore, this boundary term can be absorbed by left-hand side of (B.9) for \(s\ge C\).

Now, we deal the second boundary term in the right-hand side of (B.9). To this end, we use regularity estimates.

Let us define

$$\begin{aligned} (\psi ^{1}, h_{1}):= s^{5/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{5/2-1/m} (\psi , h )=: \xi _{1}(t)(\psi ,h). \end{aligned}$$

Then, from (3.3), \((\psi ^{1}, h_{1})\) is the solution of Stokes system:

$$\begin{aligned} \left\{ \begin{array}{lll} \psi _{t}^{1}-\Delta \psi ^{1} +\nabla h_{1} = (\xi _{1})_{t}\psi + \xi _{1} g^{\psi } , \ \ \nabla \cdot \psi ^{1} = 0 &{} \text { in } Q,\\ \psi ^{1} = 0 &{} \text { on } \Sigma ,\\ \psi ^{1} (0)=0 &{}\text { in } \Omega , \end{array} \right. \end{aligned}$$
(B.10)

Using Lemma 2.6 for the last system, we have

$$\begin{aligned} \Vert \psi ^{1} \Vert _{X_{1}}^{2} \le C \left( \left\| (\xi _{1})_{t} \psi \right\| _{X_{0}}^{2} + \Vert \xi _{1} g^{\psi } \Vert _{X_{0}}^{2} \right) . \end{aligned}$$

From (2.1), we see that

$$\begin{aligned} | (\xi _{1})_{t} |\le C s^{7/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{7/2}, \end{aligned}$$

for every \(s\ge C.\) Thus, we obtain

$$\begin{aligned} \left\| \psi ^{1} \right\| _{X_{1}}^{2} \le C \left( \left\| s^{7/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{7/2} \psi \right\| _{X_{0}}^{2}+ \left\| \xi _{1} g^{\psi } \right\| _{X_{0}}^{2}\right) . \end{aligned}$$

Next, we introduce:

$$\begin{aligned} (\psi ^{2}, h_{2}):= s^{3/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{3/2-2/m} (\psi , h )=: \xi _{2}(t)(\psi ,h). \end{aligned}$$

Now, from (3.3), \((\psi ^{2}, h_{2})\) is the solution of Stokes system:

$$\begin{aligned} \left\{ \begin{array}{ll} \psi _{t}^{2}-\Delta \psi ^{2} +\nabla h_{2} = (\xi _{2})_{t}\psi + \xi _{2} g^{\psi },\ \ \nabla \cdot \psi ^{2} = 0 &{} \text { in } Q,\\ \psi ^{2} = 0 &{} \text { on } \Sigma ,\\ \psi ^{2} (0)=0 &{}\text { in } \Omega , \end{array} \right. \end{aligned}$$
(B.11)

Using Lemma 2.6 for the last system, we find:

$$\begin{aligned} \left\| \psi ^{2} \right\| _{X_{2}}^{2} \le C \left( \left\| (\xi _{2})_{t}\psi \right\| _{X_{1}}^{2} + \Vert \xi _{2}g^{\psi } \Vert _{X_{1}}^{2} \right) . \end{aligned}$$

Using the estimate

$$\begin{aligned} | (\xi _{2})_{t} |\le C s^{5/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{5/2-1/m}, \end{aligned}$$

for every \(s\ge C.\) Thus, we obtain

$$\begin{aligned} \left\| \psi ^{2} \right\| _{X_{2}}^{2} \le&C \left( \left\| s^{5/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{5/2-1/m} \psi \right\| _{X_{1}}^{2} + \left\| \xi _{2}g^{\psi } \right\| _{X_{1}}^{2}\right) .\\ \le&C \left( \left\| s^{7/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{7/2} \psi \right\| _{X_{0}}^{2} + \left\| \xi _{1}g^{\psi } \right\| _{X_{0}}^{2} + \left\| \xi _{2}g^{\psi } \right\| _{X_{1}}^{2} \right) . \end{aligned}$$

Next, we define:

$$\begin{aligned} (\psi ^{3}, h_{3}):= s^{1/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{1/2-3/m} (\psi , h )=: \xi _{3}(t)(\psi ,h). \end{aligned}$$

Then, from (3.3), \((\psi ^{3}, h_{3})\) is the solution of Stokes system:

$$\begin{aligned} \left\{ \begin{array}{ll} \psi _{t}^{3}-\Delta \psi ^{3} +\nabla h_{3} = (\xi _{3})_{t}\psi + \xi _{3}g^{\psi },\ \ \nabla \cdot \psi ^{3} = 0 &{} \text { in } Q,\\ \psi ^{3} = 0 &{} \text { on } \Sigma ,\\ \psi ^{3} (0)=0 &{}\text { in } \Omega , \end{array} \right. \end{aligned}$$
(B.12)

Using Lemma 2.6 for the last system, we get:

$$\begin{aligned} \left\| \psi ^{3} \right\| _{X_{3}}^{2} \le C \left( \left\| (\xi _{3})_{t}\psi \right\| _{X_{2}}^{2} + \left\| \xi _{3} g^{\psi } \right\| _{X_{2}}^{2}\right) . \end{aligned}$$

Using the estimate

$$\begin{aligned} | (\xi _{3})_{t} |\le C s^{3/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{3/2-2/m}, \end{aligned}$$

for every \(s\ge C.\) Thus, we obtain

$$\begin{aligned} \left\| \psi ^{3} \right\| _{X_{3}}^{2} \le&C \left( \left\| \psi ^{2} \right\| _{X_{2}}^{2} + \left\| \xi _{3} g^{\psi } \right\| _{X_{2}}^{2} \right) .\\ \le&C \left( \left\| s^{7/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{7/2} \psi \right\| _{X_{0}}^{2} + \left\| \xi _{1}g^{\psi }\right\| _{X_{0}}^{2} + \left\| \xi _{2}g^{\psi } \right\| _{X_{1}}^{2} + \left\| \xi _{3}g^{\psi } \right\| _{X_{2}}^{2} \right) . \end{aligned}$$

Next, we introduce:

$$\begin{aligned} (\psi ^{4}, h_{4}):= s^{-1/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{-1/2-4/m} (\psi , h )=: \xi _{4}(t)(\psi ,h). \end{aligned}$$

Then, from (3.3), \((\psi ^{4}, h_{4})\) is the solution of Stokes system:

$$\begin{aligned} \left\{ \begin{array}{ll} \psi _{t}^{4}-\Delta \psi ^{4} +\nabla h_{4} = (\xi _{4})_{t}\psi + \xi _{4} g^{\psi },\ \ \nabla \cdot \psi ^{4} = 0 &{} \text { in } Q,\\ \psi ^{4} = 0 &{} \text { on } \Sigma ,\\ \psi ^{4} (0)=0 &{}\text { in } \Omega , \end{array} \right. \end{aligned}$$
(B.13)

Using Lemma 2.6 for the last system, we find:

$$\begin{aligned} \left\| \psi ^{4} \right\| _{X_{4}}^{2} \le C \left( \left\| (\xi _{4})_{t}\psi \right\| _{X_{3}}^{2} + \left\| \xi _{4} g^{\psi } \right\| _{X_{3}}^{2} \right) . \end{aligned}$$

Using the estimate

$$\begin{aligned} | (\xi _{4})_{t} |\le C s^{1/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{1/2-3/m}, \end{aligned}$$

for every \(s\ge C.\) Thus, we obtain

$$\begin{aligned} \left\| \psi ^{4} \right\| _{X_{4}}^{2} \le&C \left( \left\| \psi ^{3} \right\| _{X_{3}}^{2} + \left\| \xi _{4} g^{\psi } \right\| _{X_{3}}^{2} \right) .\\ \le&C \left( \left\| s^{7/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{7/2} \psi \right\| _{X_{0}}^{2} + \left\| \xi _{1}g^{\psi }\right\| _{X_{0}}^{2} + \left\| \xi _{2}g^{\psi } \right\| _{X_{1}}^{2} + \left\| \xi _{3} g^{\psi } \right\| _{X_{2}}^{2} + \left\| \xi _{4}g^{\psi } \right\| _{X_{3}}^{2} \right) . \end{aligned}$$

Then, using interpolation argument between the spaces \(X_{3}\) and \(X_{4},\) we get

$$\begin{aligned} \left\| e^{-5s\alpha ^{*}}(\xi ^{*})^{-7/(2m)} \psi \right\| _{L^{2}(0,T;H^{8}(\Omega )^{N})\cap H^{1}(0,T;H^{6}(\Omega )^{N})}^{2} \le&C \left( \left\| s^{1/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{1/2-3/m} \psi \right\| _{X_{3}}\right. \\&\left. \cdot \left\| s^{-1/2}e^{-5s\alpha ^{*}}(\xi ^{*})^{-1/2-4/m} \psi \right\| _{X_{4}} \right) . \end{aligned}$$

Now, we consider the boundary term

$$\begin{aligned}&s^{-1/2}\left\| e^{-5s\alpha ^{*}} (\xi ^{*})^{-1/4} \nabla \nabla \nabla \Delta ^{2} \psi _{1} \right\| _{H^{1/4,1/2}(\Sigma )^{8}}^{2}\nonumber \\ \le&C \left( s^{-1/2} \left\| e^{-5s\alpha ^{*}} (\xi ^{*})^{-1/4} \nabla \nabla \nabla \Delta ^{2} \psi _{1} \right\| _{H^{1}(0,T;H^{-1}(\Omega )^{N})}^{2}\right. \nonumber \\&+ \left. s^{-1/2}\left\| e^{-5s\alpha ^{*}} (\xi ^{*})^{-1/4} \nabla \nabla \nabla \Delta ^{2} \psi _{1} \right\| _{L^{2}(0,T;H^{1}(\Omega )^{N})}^{2}\right) .\nonumber \\ \le&C \left( s^{-1/2}\left\| e^{-5s\alpha ^{*}} (\xi ^{*})^{-1/4} \psi _{1} \right\| _{L^{2}(0,T;H^{8}(\Omega )^{N})}^{2}\right. \nonumber \\&+ \left. s^{-1/2}\left\| e^{-5s\alpha ^{*}} (\xi ^{*})^{-1/4} \psi _{1} \right\| _{H^{1}(0,T;H^{6}(\Omega )^{N})}^{2}\right) .\nonumber \\ =&C s^{-1/2}\left\| e^{-5s\alpha ^{*}} (\xi ^{*})^{-1/4} \psi _{1} \right\| _{L^{2}(0,T;H^{8}(\Omega )^{N}) \cap H^{1}(0,T;H^{6}(\Omega )^{N})}^{2}.\nonumber \\ \le&Cs^{-1/2} \left\| e^{-5s\alpha ^{*}} (\xi ^{*})^{-7/(2m)} \psi \right\| _{L^{2}(0,T;H^{8}(\Omega )^{N}) \cap H^{1}(0,T;H^{6}(\Omega )^{N})}^{2}. \end{aligned}$$
(B.14)

By taking s large enough in (B.14), the boundary term \(s^{-1/2}\Big \Vert e^{-5s\alpha } \xi ^{-1/4}\psi \Big \Vert _{H^{1/4,1/2}(\Sigma )^{16}}\) can be absorbed by the term \(\Big \Vert e^{-5s\alpha ^{*}}(\xi ^{*})^{-7/(2m)}\psi \Big \Vert _{L^{2}(0,T;H^{8}(\Omega )^{N})\cap H^{1}(0,T;H^{6}(\Omega )^{N}) }^{2}\) and step 2 is finished.

Thus, at this point we have

$$\begin{aligned}{} & {} s^{-1}\iint \limits _{Q}{e^{-10s\alpha } \xi ^{-1}|\nabla \nabla \nabla \nabla \Delta ^{2}\psi _{1}|^{2} \textrm{d}x\,\textrm{d}t} + s \iint \limits _{Q}{e^{-10s\alpha } \xi |\nabla \nabla \nabla \Delta ^{2}\psi _{1}|^{2} \textrm{d}x\,\textrm{d}t}\nonumber \\{} & {} + s^{3} \iint \limits _{Q}{e^{-10s\alpha }\xi ^{3}|\nabla \nabla \Delta ^{2}\psi _{1}|^{2} \textrm{d}x\,\textrm{d}t}+ s^{5}\iint \limits _{Q}{e^{-10s\alpha } \xi ^{5}|\nabla \Delta ^{2}\psi _{1}|^{2} \textrm{d}x\,\textrm{d}t} \nonumber \\{} & {} + s^{7} \iint \limits _{Q}{e^{-10s\alpha }\xi ^{7}|\Delta ^{2}\psi _{1} |^{2}\textrm{d}x\,\textrm{d}t} \nonumber \\{} & {} + s^{7}\iint \limits _{Q}{e^{-10s\alpha ^{*}} (\xi ^{*})^{7}|\psi |^{2} \textrm{d}x\,\textrm{d}t} + s^{7}\iint \limits _{Q}{e^{-10s\alpha ^{*}} (\xi ^{*})^{7}|\nabla \psi |^{2} \textrm{d}x\,\textrm{d}t} \nonumber \\{} & {} + s^{7}\iint \limits _{Q}{e^{-10s\alpha ^{*}} (\xi ^{*})^{7}|\Delta \psi |^{2} \textrm{d}x\,\textrm{d}t} \nonumber \\{} & {} \le C \left( s\iint \limits _{\omega _{0}\times (0,T)}{e^{-10s\alpha }\xi |\nabla \nabla \nabla \Delta ^{2}\psi _{1}|^{2}\textrm{d}x\,\textrm{d}t} + s^{3}\iint \limits _{\omega _{0}\times (0,T)}{e^{-10s\alpha }\xi ^{3} |\nabla \nabla \Delta ^{2}\psi _{1}|^{2} \textrm{d}x\,\textrm{d}t} \right. \nonumber \\{} & {} + s^{5}\iint \limits _{\omega _{0}\times (0,T)}{e^{-10s\alpha }\xi ^{5} |\nabla \Delta ^{2}\psi _{1}|^{2}\textrm{d}x\,\textrm{d}t} + s^{7}\iint \limits _{\omega _{0}\times (0,T)}{e^{-10s\alpha }\xi ^{7} |\Delta ^{2}\psi _{1}|^{2} \textrm{d}x\,\textrm{d}t} \nonumber \\{} & {} + s^{7} \iint \limits _{Q}{e^{-10s\alpha ^{*}} (\xi ^{*})^{7} | \Delta g^{\psi } |^{2} \textrm{d}x\,\textrm{d}t} \nonumber \\{} & {} \left. +s^{7}\iint _{Q}{e^{-10s\alpha } | \nabla \nabla \Delta ^{2}g^{\psi }|^{2} \textrm{d}x\,\textrm{d}t} + \Vert \xi _{1}g^{\psi }\Vert _{X_{0}}^{2} \right. \nonumber \\{} & {} \left. + \Vert \xi _{2}g^{\psi }\Vert _{X_{1}}^{2} + \Vert \xi _{3}g^{\psi }\Vert _{X_{2}}^{2} + \Vert \xi _{4}g^{\psi }\Vert _{X_{3}}^{2} \right) , \end{aligned}$$
(B.15)

for every \(s\ge C.\)

Step 3

In this step, we estimate the first three terms in the right-hand side of (B.15) in terms of \(\Delta ^{2} \psi _{1}\) and small constants multiplied by the left-hand side of (B.15).

We start by estimating the term on \(\nabla \nabla \nabla \Delta ^{2}\psi _{1}\). Let \(\omega _{1}\) be an open subset satisfying \(\omega _{0}\Subset \omega _{1}\Subset \tilde{\omega }\) and let \(\rho _{1}\in C_{c}^{2}(\omega _{1})\) with \(\rho _{1}\equiv 1\) in \(\omega _{0}\) and \(0\le \rho _{1}\). Then, an integration by parts gives

$$\begin{aligned}&s\iint \limits _{ \omega _{0}\times (0,T)}{e^{-10s\alpha }\xi \left| \nabla \nabla \nabla \Delta ^{2}\psi _{1} \right| ^{2}\textrm{d}x\,\textrm{d}t} \\ \le&s\iint \limits _{ \omega _{1} \times (0,T)}{\rho _{1} e^{-10s\alpha }\xi \left| \nabla \nabla \nabla \Delta ^{2}\psi _{1} \right| ^{2}\textrm{d}x\,\textrm{d}t}.\\ =&-s\iint \limits _{ \omega _{1}\times (0,T) }{\rho _{1}e^{-10s\alpha }\xi \nabla \nabla \Delta ^{2}\psi _{1} (\nabla \nabla \nabla \nabla \Delta ^{2}\psi _{1}) \textrm{d}x\,\textrm{d}t} \\&\left. + \dfrac{s}{2}\iint \limits _{\omega _{1}\times (0,T)}{\Delta (\rho _{1}e^{-10s\alpha }\xi ) \left| \nabla \nabla \nabla \Delta ^{2}\psi _{1}\right| ^{2} \textrm{d}x\,\textrm{d}t}. \right. \end{aligned}$$

Using the Cauchy–Schwarz’s inequality for the first term and property (2.2) for the second one, we obtain for every \(\epsilon > 0\)

$$\begin{aligned} \begin{aligned} s\iint \limits _{\omega _{0}\times (0,T) }{e^{-10s\alpha }\xi \left| \nabla \nabla \nabla \Delta ^{2}\psi _{1} \right| ^{2}\textrm{d}x\,\textrm{d}t} \le&C s^{3}\iint \limits _{ \omega _{1}\times (0,T)}{e^{-10s\alpha }\xi ^{3} \left| \nabla \nabla \Delta ^{2}\psi _{1}\right| ^{2} \textrm{d}x\,\textrm{d}t} \\&+ \epsilon s^{-1}\iint \limits _{Q}{e^{-10s\alpha }\xi ^{-1} \left| \nabla \nabla \nabla \nabla \Delta ^{2}\psi _{1} \right| ^{2} \textrm{d}x\,\textrm{d}t}, \end{aligned} \end{aligned}$$
(B.16)

for every \(s\ge C\) (C depending also on \(\epsilon \)).

Repeating the same argument we can obtain the estimates of \(\nabla \nabla \Delta ^2 \psi _{1}\) in terms of \(\nabla \Delta ^2 \psi _{1}\) and \(\nabla \Delta ^2 \psi _{1}\) in terms of \(\Delta ^2 \psi _{1},\) namely

$$\begin{aligned}{} & {} \begin{aligned} s^{3}\iint \limits _{\omega _{1}\times (0,T) }{e^{-10s\alpha }\xi ^{3} \left| \nabla \nabla \Delta ^{2}\psi _{1} \right| ^{2}\textrm{d}x\,\textrm{d}t} \le&C s^{5}\iint \limits _{ \omega _{2}\times (0,T)}{e^{-10s\alpha }\xi ^{5} \left| \nabla \Delta ^{2}\psi _{1}\right| ^{2} \textrm{d}x\,\textrm{d}t}\ \\&+ \epsilon s\iint \limits _{Q}{e^{-10s\alpha }\xi \left| \nabla \nabla \nabla \Delta ^{2}\psi _{1} \right| ^{2} \textrm{d}x\,\textrm{d}t}, \end{aligned} \end{aligned}$$
(B.17)
$$\begin{aligned}{} & {} \begin{aligned} s^{5}\iint \limits _{ \omega _{2}\times (0,T)}{e^{-10s\alpha }\xi ^{5} \left| \nabla \Delta ^{2}\psi _{1} \right| ^{2} \textrm{d}x\,\textrm{d}t} \le&Cs^{7}\iint \limits _{ \omega _{3}\times (0,T)}{e^{-10s\alpha }\xi ^{7} \left| \Delta ^{2}\psi _{1}\right| ^{2} \textrm{d}x\,\textrm{d}t} \\&+ \epsilon s^{3}\iint \limits _{Q}{e^{-10s\alpha }\xi ^{3} \left| \nabla \nabla \Delta ^{2}\psi _{1} \right| ^{2} \textrm{d}x\,\textrm{d}t}, \end{aligned} \end{aligned}$$
(B.18)

for every \(s\ge C\) (C depending also on \(\epsilon \)), where \(\omega _{1}\Subset \omega _{2}\Subset \omega _{3}\Subset \tilde{\omega }.\)

This estimate, together with (B.15), (B.16) and (B.17), readily gives the desired Carleman inequality (3.4). This concludes the proof of Proposition 2. \(\square \)

Appendix C: Proof of Lemma 4.2

We are going to prove that \(e^{4s\beta ^{*}}(\gamma ^{*})^{-14-14/m}\hat{z}\in L^{2}(Q)^{N}\) using a method introduced in [35], which consists of increasing the regularity of the function \(\hat{z}\) through certain weight functions involved in order to then be able to apply a local inverse theorem in a sufficiently regular space (more details, see Sect. 5).

Proof

Next, we define the following functions:

$$\begin{aligned}{} & {} (z_{*,0}, p_{*,0}):= e^{4s\beta ^{*}}(\gamma ^{*})^{-5-5/m}(\hat{z}, \hat{p}_{1}), \\{} & {} \text {} f_{*,0}^{z}:= e^{4s\beta ^{*}}(\gamma ^{*})^{-5-5/m}(f^{z} + \nabla \times ((\nabla \times \hat{w})\chi )). \end{aligned}$$

Notice that \(f_{*,0}^{z}\in L^{2}(0,T;H^{-1}(\Omega )^{N})\), since this function can be written as:

$$\begin{aligned} f_{*,0}^{z}= e^{-3s\beta ^{*}}(\gamma ^{*})^{-5-5/m}( e^{7s\beta ^{*}} f^{z} ) + (\gamma ^{*})^{-4-4/m}\nabla \times \left( (\nabla \times w_{*}) \chi \right) , \end{aligned}$$

where \(e^{-3s\beta ^{*}}(\gamma ^{*})^{-5-5/m}\) and \((\gamma ^{*})^{-4-4/m}\) are bounded; also, using (4.4); in dimension 2, we can consider \(\chi =~\mathbb {1}_{\mathcal {O}}\), then \((\nabla \times w_{*})\mathbb {1}_{\mathcal {O}} \in L^{2}(Q)^{2},\) and, on the other hand, in dimension 3, we have that \((\nabla \times w_{*})\chi \) belongs to \(L^{2}(0,T;H^{1}(\Omega )^{3}),\) and as \(H^{1}(\Omega )^{3}\subset L^{2}(\Omega )^{3}\), we obtain \((\nabla \times w_{*})\chi \in L^{2}(Q)^{3}.\)

Then, by (4.9) \(z_{*,0}\) satisfies

$$\begin{aligned} \left\{ \begin{array}{ll} \mathcal {L}^{*} z_{*,0} + \nabla p_{*,0} = f_{*,0}^{z} - (e^{4s\beta ^{*}}(\gamma ^{*})^{-5-5/m})_{t}\hat{z}, \ \ \nabla \cdot z_{*,0} = 0 &{} \text { in } Q, \\ z_{*,0} = 0 &{} \text { on } \Sigma , \\ z_{*,0}(T) = 0 &{} \text { in } \Omega , \end{array} \right. \end{aligned}$$

where the last term in the right-hand side can be written as

$$\begin{aligned} (e^{4s\beta ^{*}}(\gamma ^{*})^{-5-5/m})_{t}\hat{z} = c_{4}(t) (\mathcal {L}_{H}^{*})^{4}\tilde{z}, \end{aligned}$$

where \(c_{k}(t)\) denotes a generic function such that (see (2.2))

$$\begin{aligned} | c_{k}^{(\ell )}(t) | \le C < \infty , \text { } \forall \ell = 0,\dots , k. \end{aligned}$$
(C.1)

On the other hand, for any \(h\in Y_{3,0}\), we obtain

$$\begin{aligned} \iint \limits _{Q}{z_{*,0} \cdot h \textrm{d}x\,\textrm{d}t}= & {} \iint \limits _{Q}{ \Big \langle f_{*,0}^{z} , \Phi \Big \rangle _{L^{2}(0,T;H^{-1}(\Omega )^{N}),L^{2}(0,T;H_{0}^{1}(\Omega )^{N})} \textrm{d}x\,\textrm{d}t}\nonumber \\{} & {} - \iint \limits _{Q}{c_{4}(t)(\mathcal {L}^{*})_{H}^{4}\tilde{z}\cdot \Phi \textrm{d}x\,\textrm{d}t}, \end{aligned}$$
(C.2)

where \(\Phi \) solves, together some pressure \(\pi _{\Phi }\),

$$\begin{aligned} \left\{ \begin{array}{ll} \mathcal {L} \Phi + \nabla \pi _{\Phi } = h, \ \ \nabla \cdot \Phi = 0 &{} \text { in } Q, \\ \Phi = 0 &{} \text { on } \Sigma , \\ \Phi (0) = 0 &{} \text { in } \Omega . \end{array} \right. \end{aligned}$$

Using (4.12), we can integrate by parts to obtain

$$\begin{aligned} \iint \limits _{Q}{z_{*,0} \cdot h \textrm{d}x\,\textrm{d}t}= & {} \iint \limits _{Q}{ \Big \langle f_{*,0}^{z} , \Phi \Big \rangle _{L^{2}(0,T;H^{-1}(\Omega )^{N}),L^{2}(0,T;H_{0}^{1}(\Omega )^{N})} \textrm{d}x\,\textrm{d}t}\\{} & {} - \iint \limits _{Q}{ (\mathcal {L}_{H}^{*})^{3}\tilde{z}\cdot (\mathcal {L} [c_{4}(t)\Phi ] + \nabla (c_{4}(t)h) ) \textrm{d}x\,\textrm{d}t},\\{} & {} = \iint \limits _{Q}{ \Big \langle f_{*,0}^{z} , \Phi \Big \rangle _{L^{2}(0,T;H^{-1}(\Omega )^{N}),L^{2}(0,T;H_{0}^{1}(\Omega )^{N})} \textrm{d}x\,\textrm{d}t} \\{} & {} - \iint \limits _{Q} \tilde{z}\cdot \Big ( c_{4}^{(4)}(t)\Phi + \mathcal {L} [c_{4}^{(3)}(t)\Phi ] \\{} & {} + \mathcal {L}^{2} [c_{4}^{(2)}(t)\Phi ] +\mathcal {L}^{3} [c_{4}^{(1)}(t)\Phi ] + \mathcal {L}^{3} [c_{4}(t) h ] \Big ) \textrm{d}x\,\textrm{d}t. \end{aligned}$$

Notice that here we have relied on the fact that \(\mathcal {L}_{H}^{*}\tilde{z}\), \(\Phi \) and h belong to the space H. Since

$$\begin{aligned} \big \Vert \Phi \big \Vert _{Y_{4}} \le C \big \Vert h \big \Vert _{Y_{3,0}}, \end{aligned}$$

(see regularity result (2.7)), we obtain from the last equality, together with (C.1),

$$\begin{aligned} \iint \limits _{Q}{z_{*,0} \cdot h \textrm{d}x\,\textrm{d}t} \le C \Big [ \big \Vert f_{*,0}^{z} \big \Vert _{L^{2}(0,T;H^{-1}(\Omega )^{N})} + \Vert \tilde{z}\Vert _{L^{2}(Q)^{N}} \Big ] \Vert h \Vert _{Y_{3,0}}, \forall h \in Y_{3,0}.\nonumber \\ \end{aligned}$$
(C.3)

Now, let

$$\begin{aligned}{} & {} (z_{*,1}, p_{*,1}):= e^{4s\beta ^{*}}(\gamma ^{*})^{-9-9/m}(\hat{z}, \hat{p}_{1}), \\{} & {} \text {} f_{*,1}^{z}:= e^{4s\beta ^{*}}(\gamma ^{*})^{-9-9/m}(f^{z} + \nabla \times ((\nabla \times \hat{w})\chi )). \end{aligned}$$

Similarly as before, \((z_{*,1},p_{*,1})\) satisfies

$$\begin{aligned} \left\{ \begin{array}{ll} \mathcal {L}^{*} z_{*,1} + \nabla p_{*,1} = f_{*,1}^{z} - (e^{4s\beta ^{*}} (\gamma ^{*})^{-9-9/m})_{t}\hat{z}, \ \ \nabla \cdot z_{*,1} = 0 &{} \text { in } Q, \\ z_{*,1} = 0 &{} \text { on } \Sigma , \\ z_{*,1}(T) = 0 &{} \text { in } \Omega , \end{array} \right. \end{aligned}$$

Thus, for any \(h\in Y_{2,0}\), we get

$$\begin{aligned} \iint \limits _{Q}{z_{*,1} \cdot h \textrm{d}x\,\textrm{d}t}&= \iint \limits _{Q}{ \Big \langle f_{*,1}^{z} , \Phi \Big \rangle _{L^{2}(0,T;H^{-1}(\Omega )^{N}),L^{2}(0,T;H_{0}^{1}(\Omega )^{N})} \textrm{d}x\,\textrm{d}t} \\&- \iint \limits _{Q}{ (e^{4s\beta ^{*}}(\gamma ^{*})^{-9-9/m} )_{t} \hat{z}\cdot \Phi \textrm{d}x\,\textrm{d}t}. \end{aligned}$$

Moreover, since

$$\begin{aligned} \iint \limits _{Q}{ (e^{4s\beta ^{*}}(\gamma ^{*})^{-9-9/m})_{t} \hat{z}\cdot \Phi \textrm{d}x\,\textrm{d}t} = \iint \limits _{Q}{ c_{3}(t)\Phi \cdot z_{*,0} \textrm{d}x\,\textrm{d}t}. \end{aligned}$$

using (C.3) with \(c_{3}(t)\Phi \) instead of h (notice that \(c_{3}(t)\Phi \in Y_{3,0}\)), we get the estimate

$$\begin{aligned} \iint \limits _{Q}{c_{3}(t)\Phi \cdot z_{*,0} \textrm{d}x\,\textrm{d}t} \le C \Big [ \Vert f_{*,0}^{z} \Vert _{L^{2}(0,T;H^{-1}(\Omega )^{N})} + \Vert \tilde{z} \Vert _{L^{2}(Q)^{N}} \Big ] \Vert c_{3}(t)\Phi \Vert _{Y_{3,0}}. \end{aligned}$$

Going back to \(z_{*,1}\), we have

$$\begin{aligned} \iint \limits _{Q}{z_{*,1}\cdot h \textrm{d}x\,\textrm{d}t} \le C \Big [ \left\| f_{*,0}^{z} \right\| _{L^{2}(0,T;H^{-1}(\Omega )^{N})} + \Vert \tilde{z} \Vert _{L^{2}(Q)^{N}} \Big ] \Vert \Phi \Vert _{Y_{3,0}}, \end{aligned}$$

where we have used (C.1) and the property \((\gamma ^{*})^{-9-9/m}\le C(\gamma ^{*})^{-5-5/m}.\) Taking into account that

$$\begin{aligned} \Vert \Phi \Vert _{Y_{3}} \le C \Vert h \Vert _{Y_{2,0}}, \end{aligned}$$

(see (2.6)) we obtain

$$\begin{aligned} \iint \limits _{Q}{z_{*,1}\cdot h \textrm{d}x\,\textrm{d}t} \le C \Big [ \Vert f_{*,0}^{z} \Vert _{L^{2}(0,T;H^{-1}(\Omega )^{N}) } + \Vert \tilde{z} \Vert _{L^{2}(Q)^{N}} \Big ] \Vert h \Vert _{Y_{2,0}}, \forall h \in Y_{2,0}. \end{aligned}$$
(C.4)

Now, let

$$\begin{aligned}{} & {} (z_{*,2}, p_{*,2}):= e^{4s\beta ^{*}}(\gamma ^{*})^{-12-12/m}(\hat{z}, \hat{p}_{1}), \\{} & {} \text {} f_{*,2}^{z}:= e^{4s\beta ^{*}}(\gamma ^{*})^{-12-12/m}(f^{z} + \nabla \times ((\nabla \times \hat{w})\chi )). \end{aligned}$$

Analogously, as before, \((z_{*,2},p_{*,2})\) satisfies

$$\begin{aligned} \left\{ \begin{array}{ll} \mathcal {L}^{*} z_{*,2} + \nabla p_{*,2} = f_{*,2}^{z} - (e^{4s\beta ^{*}}(\gamma ^{*})^{-12-12/m})_{t}\hat{z}, \ \ \nabla \cdot z_{*,2} = 0 &{} \text { in } Q, \\ z_{*,2} = 0 &{} \text { on } \Sigma , \\ z_{*,2}(T) = 0 &{} \text { in } \Omega , \end{array} \right. \end{aligned}$$

Thus, for any \(h\in Y_{1,0}\), we obtain

$$\begin{aligned} \iint \limits _{Q}{z_{*,2} \cdot h \textrm{d}x\,\textrm{d}t}&= \iint \limits _{Q}{ \Big \langle f_{*,2}^{z} , \Phi \Big \rangle _{L^{2}(0,T;H^{-1}(\Omega )^{N}),L^{2}(0,T;H_{0}^{1}(\Omega )^{N}) } \textrm{d}x\,\textrm{d}t}\\ {}&- \iint \limits _{Q}{ (e^{4s\beta ^{*}}(\gamma ^{*})^{-12-12/m} )_{t} \hat{z}\cdot \Phi \textrm{d}x\,\textrm{d}t}. \end{aligned}$$

Moreover, since

$$\begin{aligned} \iint \limits _{Q}{ (e^{4s\beta ^{*}}(\gamma ^{*})^{-12-12/m})_{t} \hat{z}\cdot \Phi \textrm{d}x\,\textrm{d}t} = \iint \limits _{Q}{ c_{2}(t)\Phi \cdot z_{*,0} \textrm{d}x\,\textrm{d}t}. \end{aligned}$$

using (C.4) with \(c_{2}(t)\Phi \) instead of h (notice that \(c_{2}(t)\Phi \in Y_{2,0}\)), we get the estimate

$$\begin{aligned} \iint \limits _{Q}{c_{2}(t)\Phi \cdot z_{*,0} \textrm{d}x\,\textrm{d}t} \le C \Big [ \Vert f_{*,0}^{z} \Vert _{ L^{2}(0,T;H^{-1}(\Omega )^{N}) } + \Vert \tilde{z} \Vert _{L^{2}(Q)^{N}} \Big ] \Vert c_{2}(t)\Phi \Vert _{Y_{2,0}}. \end{aligned}$$

Turning back to \(z_{*,2}\), we get

$$\begin{aligned} \iint \limits _{Q}{z_{*,2}\cdot h \textrm{d}x\,\textrm{d}t} \le C \Big [ \Vert f_{*,0}^{z} \Vert _{L^{2} (0,T;H^{-1}(\Omega )^{N})} + \Vert \tilde{z} \Vert _{L^{2}(Q)^{N}} \Big ] \Vert \Phi \Vert _{Y_{2,0}}, \end{aligned}$$

where we have used (C.1) and the property \((\gamma ^{*})^{-12-12/m}\le C(\gamma ^{*})^{-9-9/m}.\) Taking into account that

$$\begin{aligned} \Vert \Phi \Vert _{Y_{2}} \le C \Vert h \Vert _{Y_{1,0}}, \end{aligned}$$

(see (2.6)) we obtain

$$\begin{aligned} \iint \limits _{Q}{z_{*,2}\cdot h \textrm{d}x\,\textrm{d}t} \le C \Big [ \Vert f_{*,0}^{z} \Vert _{ L^{2}(0,T;H^{-1}(\Omega )^{N})} + \Vert \tilde{z} \Vert _{L^{2}(Q)^{N}} \Big ] \Vert h \Vert _{Y_{1,0}}, \forall h \in Y_{1,0}.\nonumber \\ \end{aligned}$$
(C.5)

Finally, we set

$$\begin{aligned} (z_{*,3}, p_{*,3}):= e^{4s\beta ^{*}}(\gamma ^{*})^{-14-14/m}(\hat{z}, \hat{p}_{1}), \text {} f_{*,3}^{z}:= e^{4s\beta ^{*}}(\gamma ^{*})^{-14-14/m}(f^{z} + \nabla \times ((\nabla \times \hat{w})\chi )). \end{aligned}$$

Similarly as before, \((z_{*,3},p_{*,3})\) satisfies

$$\begin{aligned} \left\{ \begin{array}{lll} \mathcal {L}^{*} z_{*,3} + \nabla p_{*,3} = f_{*,3}^{z} - (e^{4s\beta ^{*}}(\gamma ^{*})^{-14-14/m})_{t}\hat{z}, \ \ \nabla \cdot z_{*,3} = 0 &{} \text { in } Q, \\ z_{*,3} = 0 &{} \text { on } \Sigma , \\ z_{*,3}(T) = 0 &{} \text { in } \Omega . \end{array} \right. \end{aligned}$$

Thus, for any \(h\in Y_{0}\), we obtain

$$\begin{aligned} \iint \limits _{Q}{z_{*,3} \cdot h \textrm{d}x\,\textrm{d}t}&= \iint \limits _{Q}{ \Big \langle f_{*,3}^{z} , \Phi \Big \rangle _{ L^{2}(0,T;H^{-1}(\Omega )^{N}),L^{2}(0,T;H_{0}^{1}(\Omega )^{N}) } \textrm{d}x\,\textrm{d}t} \\&- \iint \limits _{Q}{ (e^{4s\beta ^{*}}(\gamma ^{*})^{-14-14/m} )_{t} \hat{z}\cdot \Phi \textrm{d}x\,\textrm{d}t}. \end{aligned}$$

Moreover, since

$$\begin{aligned} \iint \limits _{Q}{ (e^{4s\beta ^{*}}(\gamma ^{*})^{-14-14/m})_{t} \hat{z}\cdot \Phi \textrm{d}x\,\textrm{d}t} = \iint \limits _{Q}{ c_{1}(t)\Phi \cdot z_{*,0} \textrm{d}x\,\textrm{d}t}. \end{aligned}$$

using (C.5) with \(c_{1}(t)\Phi \) instead of h (notice that \(c_{1}(t)\Phi \in Y_{1,0}\)), we get the estimate

$$\begin{aligned} \iint \limits _{Q}{c_{1}(t)\Phi \cdot z_{*,0} \textrm{d}x\,\textrm{d}t} \le C \Big [ \Vert f_{*,0}^{z} \Vert _{ L^{2}(0,T;H^{-1}(\Omega )^{N}) } + \Vert \tilde{z} \Vert _{L^{2}(Q)^{N}} \Big ] \Vert c_{1}(t)\Phi \Vert _{Y_{1,0}}. \end{aligned}$$

Turning back to \(z_{*,3}\), we obtain

$$\begin{aligned} \iint \limits _{Q}{z_{*,3}\cdot h \textrm{d}x\,\textrm{d}t} \le C \Big [ \Vert f_{*,0}^{z} \Vert _{ L^{2}(0,T;H^{-1}(\Omega )^{N}) } + \Vert \tilde{z} \Vert _{L^{2}(Q)^{N}} \Big ] \Vert \Phi \Vert _{Y_{1,0}}, \end{aligned}$$

where we have used (C.1) and the property \((\gamma ^{*})^{-14-14/m}\le C(\gamma ^{*})^{-12-12/m}.\) Taking into account that

$$\begin{aligned} \Vert \Phi \Vert _{Y_{1,0}} \le C \Vert h \Vert _{Y_{0}}, \end{aligned}$$

(see (2.6)) we obtain

$$\begin{aligned} \iint \limits _{Q}{z_{*,3}\cdot h \textrm{d}x\,\textrm{d}t} \le C \Big [ \Vert f_{*,0}^{z} \Vert _{ L^{2}(0,T;H^{-1}(\Omega )^{N}) } + \Vert \tilde{z} \Vert _{L^{2}(Q)^{N}} \Big ] \Vert h \Vert _{Y_{0}}, \forall h \in Y_{0}. \end{aligned}$$

Thus, we deduce that \(z_{*,3}\in L^{2}(Q)^{N}.\) The proof of Lemma 4.2 is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carreño, N., Prada, J. Existence of Controls Insensitizing the Rotational of the Solution of the Navier–Stokes System Having a Vanishing Component. Appl Math Optim 88, 37 (2023). https://doi.org/10.1007/s00245-023-10011-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10011-7

Keywords

Mathematics Subject Classification

Navigation