Skip to main content
Log in

A Strong Averaging Principle Rate for Two-Time-Scale Coupled Forward–Backward Stochastic Differential Equations Driven by Fractional Brownian Motion

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

This paper concerns the strong convergence rate of an averaging principle for two-time-scale coupled forward–backward stochastic differential equations (CFBSDEs, for short) driven by fractional Brownian motion (fBm, for short). The fast component is a forward stochastic differential equation (FSDE, for short) driven by Brownian motion, while the slow component is a backward stochastic differential equation (BSDE, for short) driven by fBm with the Hurst index greater than 1/2. Combining Malliavin calculus theory with stochastic integral and Khasminskii’s time discretization method, the rate of strong convergence for the slow component towards the solution of the averaging equation in the mean square sense is derived. The strong convergence rate of an averaging principle for fast–slow CFBSDEs driven by fBm is new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Hu, Y., Peng, S.: Backward stochastic differential equation driven by fractional Brownian motion. SIAM J. Control. Optim. 48(3), 1675–1700 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Maticiuc, L., Nie, T.: Fractional backward stochastic differential equations and fractional backward variational inequalities. J. Theoret. Probab. 28(1), 337–395 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Wen, J., Shi, Y.: Anticipative backward stochastic differential equations driven by fractional Brownian motion. Stat. Probab. Lett. 122, 118–127 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Douissi, S., Wen, J., Shi, Y.: Mean-field anticipated BSDEs driven by fractional Brownian motion and related stochastic control problem. Appl. Math. Comput. 355, 282–298 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Khasminskii, R.Z.: On the principle of averaging the Itô’s stochastic differential equations. Kybernetika 4(3), 260–279 (1968)

    MathSciNet  Google Scholar 

  6. Benveniste, A., Métivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations. Springer, New York (1990)

    MATH  Google Scholar 

  7. Kushner, H.J., Yin, G.: Stochastic Approximation and Recursive Algorithms and Applications, 2nd edn. Spinger, New York (2003)

    MATH  Google Scholar 

  8. Luo, L., Schuster, E.: Mixing enhancement in 2D magnetohydrodynamic channel flow by extremum seeking boundary control. In: 2009 American Control Conference. IEEE (2009)

  9. Solo, V., Kong, X.: Adaptive Signal Processing Algorithms: Stability and Performance. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  10. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley-Interscience, New York (2003)

    MATH  Google Scholar 

  11. Wu, F., Tian, T., Rawlings, J.B., Yin, G.: Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations. J. Chem. Phys. 144(17), 174112 (2016)

    Google Scholar 

  12. Kifer, Y.: Stochastic versions of Anosov and Neistadt theorems on averaging. Stoch. Dyn. 1(1), 1–21 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Givon, D., Kevrekidis, I.G.: Multiscale integration schemes for jump-diffusion systems. Multiscale Model. Simul. 7, 495–516 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Liu, S., Krstic, M.: Stochastic averaging in continuous time and its applications to extremum Seeking. IEEE Trans. Autom. Control 55(10), 2235–2250 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Liu, S., Krstic, M.: Stochastic averaging in discrete time and its applications to extremum seeking. IEEE Trans. Autom. Control 61(10), 90–102 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Wang, L., Han, X., Cao, Y., Najm, H.N.: Computational singular perturbation analysis of stochastic chemical systems with stiffness. J. Comput. Phys. 335, 404–425 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Khasminskii, R.Z., Yin, G.: On averaging principles: an asymptotic expansion approach. SIAM J. Math. Anal. 35, 1534–1560 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Weinan, E., Liu, D., Vanden-Eijnden, E.: Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math. 58(1), 1544–1585 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Givon, D.: Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. Multiscale Model. Simul. 6(2), 577–594 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Liu, D.: Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun. Math. Sci. 8(4), 999–1020 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Liu, D.: Strong convergence rate of principle of averaging for jump-diffusion processes. Front. Math. China 7(2), 305–320 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Li, X.: An averaging principle for a completely integrable stochastic Hamiltonian system. Nonlinearity 21, 803–822 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Wainrib, G.: Double averaging principle of periodically forced slow-fast stochastic systems. Electron. Commun. Probab. 18(51), 1–12 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Liu, S., Krstic, M.: Continuous-time stochastic averaging on the infinite interval for locally Lipschitz systems. SIAM J. Control. Optim. 48(5), 3589–3622 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Liu, W., Röckner, M., Sun, X., Xie, Y.: Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients. J. Differ. Equ. 268(6), 2910–2948 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Wu, F., Yin, G.: An averaging principle for two-time-scale stochastic functional differential equations. J. Differ. Equ. 269, 1037–1077 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Röckner, M., Sun, X., Xie, Y.: Strong convergence order for slow-fast McKean-Vlasov stochastic differential equations. Annales de l’Institut Henri Poincare (B) Probab. Stat. 57(1), 547–576 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Sun, X., Xie, L., Xie, Y.: Averaging principle for slow-fast stochastic partial differential equations with Hölder continuous coefficients. J. Differ. Equ. 270, 476–504 (2021)

    MATH  Google Scholar 

  29. Feo, F.: The averaging principle for non-autonomous slow-fast stochastic differential equations and an application to a local stochastic volatility model. J. Differ. Equ. 302, 406–443 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Pei, B., Inahama, Y., Xu, Y.: Averaging principle for fast-slow system driven by mixed fractional Brownian rough path. J. Differ. Equ. 301, 202–235 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Hairer, M., Li, X.: Averaging dynamics driven by fractional Brownian motion. Ann. Probab. 48(4), 1826–1860 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Röckner, M., Xie, L.: Averaging principle and normal deviations for multiscale stochastic systems. Commun. Math. Phys. 383, 1889–1937 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Röckner, M., Xie, L.: Diffusion approximation for fully coupled stochastic differential equations. Ann. Probab. 49(3), 1205–1236 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Xu, J., Liu, J., Liu, J., Miao, Y.: Strong averaging principle for two-time-scale stochastic McKean-Vlasov equations. Appl. Math. Optim. 84, s837–s867 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Bao, J., Yin, G., Yuan, C.: Two-time-scale stochastic partial differential equations driven by \(\alpha \)-stable noises: averaging principles. Bernoulli 23(1), 645–669 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Wu, F., Yin, G.: Fast-slow-coupled stochastic functional differential equations. J. Differ. Equ. 323, 1–37 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Fu, H., Wan, L., Liu, J.: Strong convergence in averaging principle for stochastic hyperbolic-parabolic equations with two time-scales. Stoch. Process. Appl. 125(8), 3255–3279 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Bréhier, C.E.: Strong and weak orders in averaging for SPDEs. Stoch. Process. Appl. 122, 2553–2593 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Bréhier, C.E.: Orders of convergence in the averaging principle for SPDEs: the case of a stochastically forced slow component. Stoch. Process. Appl. 130, 3325–3368 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Li, X., Sieber, J.: Slow-fast systems with fractional environment and dynamics. Ann. Appl. Probab. 32(5), 3964–4003 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Pardoux, E., Veretennikov, A.Y.: Averaging of backward stochastic differential equations, with application to semi-linear PDE’s. Stoch. Stoch. Rep. 60, 255–270 (1997)

    MathSciNet  MATH  Google Scholar 

  42. Essaky, E.H., Ouknine, Y.: Averaging of backward stochastic differential equations and homogenization of partial differential equations with periodic coefficients. Stoch. Anal. Appl. 24(2), 277–301 (2006)

    MathSciNet  MATH  Google Scholar 

  43. Bahlalia, K., Elouaflin, A., Pardoux, E.: Averaging for BSDEs with null recurrent fast component. Application to homogenization in a non periodic media. Stoch. Process. Appl. 127(4), 1321–1353 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Bahlali, K., Elouaflin, A., Pardoux, E.: Homogenization of semilinear PDEs with discontinuous averaged coefficients. Electron. J. Probab. 14, 477–499 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Hu, Y.: Integral transformations and anticipative calculus for fractional Brownian motions. Memoirs Am. Math. Soc. 175(825), viii+127 (2005)

  46. Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications. Springer, New York (2008)

    MATH  Google Scholar 

  47. Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, New York (2008)

    MATH  Google Scholar 

  48. Nualart, D.: The Malliavin Calculus and Related Topics. Springer, New York (2006)

    MATH  Google Scholar 

  49. Sanz-Solé, M.: Malliavin Calculus with Applications to Stochastic Partial Differential Equations. EPFL Press, Lausanne (2005)

    MATH  Google Scholar 

  50. Pei, B., Inahama, Y., Xu, Y.: Averaging principles for mixed fast-slow systems driven by fractional Brownian motion, arXiv:2001.06945v3, accepted by Kyoto Journal of Mathematics (2021)

  51. Xi, F., Zhu, C.: Jump type stochastic differential equations with non-lipschitz coefficients: non confluence, feller and strong feller properties, and exponential ergodicity. J. Differ. Equ. 266(8), 4668–4711 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Pardoux, E., Rascanu, A.: Stochastic Differential Equations. Backward SDEs, Partial Differential Equations. Springer, New York (2016)

    MATH  Google Scholar 

  53. Duan, J., Wang, W.: Effective Dynamics of Stochastic Partial Differential Equations. Elsevier, Amsterdam (2014)

    MATH  Google Scholar 

  54. Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author acknowledges Professor Jinqiao Duan careful reading of manuscript, correcting errors, detailed comments and valuable suggestions, which improve the quality of this paper. The first author also thanks the support provided by NSFs of China No.11971154.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Lian, Q. & Wu, JL. A Strong Averaging Principle Rate for Two-Time-Scale Coupled Forward–Backward Stochastic Differential Equations Driven by Fractional Brownian Motion. Appl Math Optim 88, 32 (2023). https://doi.org/10.1007/s00245-023-10008-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10008-2

Keywords

Mathematics Subject Classification

Navigation