Skip to main content
Log in

A Strong Convergence Rate of the Averaging Principle for Two-Time-Scale Forward-Backward Stochastic Differential Equations

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this paper, we study the strong convergence rate of the averaging principle of two-time-scale forward-backward stochastic differential equations (FBSDEs, for short). First, we present the well-posedness of the objective equations and then we give some a priori estimates for FBSDEs, backward stochastic auxiliary equations and backward stochastic averaged equations. Second, a strong convergence rate of the averaging principle for two-time-scale FBSDEs is derived. As far as we know, this is the first result on the strong convergence rate of the averaging principle of two-time-scale backward stochastic differential equations (BSDEs, for short).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Khasminskii, R.Z.: On the principle of averaging the Itô’s stochastic differential equations. Kibernetika 4, 260–279 (1968). (in Russian)

    Google Scholar 

  2. Benveniste, A., Métivier, M., Priouret, P.: Adaptive Algorithms and Stochastic Approximations. Springer, New York (1990)

    MATH  Google Scholar 

  3. Kushner, H.J., Yin, G.: Stochastic Approximation and Recursive Algorithms and Applications, 2nd edn. Spinger, New York (2003)

    MATH  Google Scholar 

  4. Luo, L., Schuster, E.: Mixing enhancement in 2D magnetohydrodynamic channel flow by extremum seeking boundary control. In Proc, pp. 10–12. Amer. Control Conf, St. Louis, MO (2009)

  5. Solo, V., Kong, X.: Adaptive Signal Processing Algorithms: Stability and Performance, Englewood Cliffs. Prentice Hall, Hoboken (1994)

    Google Scholar 

  6. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley-Interscience, New York (2003)

    MATH  Google Scholar 

  7. Fuke, Wu., Tian, Tianhai, Rawlings, James B., Yin, George: Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations. J. Chem. Phys. 144(17), 174112 (2016)

    Google Scholar 

  8. Kifer, Y.: Stochastic versions of Anosov and Neistadt theorems on averaging. Stoch. Dyn. 1(1), 1–21 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Givon, D., Kevrekidis, I.G.: Multiscale integration schemes for jump-diffusion systems. SIAM J. Multi. Model. Simul. 7, 495–516 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Liu, S., Krstic, M.: Stochastic averaging in continuous time and its applications to extremum Seeking. IEEE Trans. Autom. Control 55(10), 2235–2250 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Liu, S., Krstic, M.: Stochastic averaging in discrete time and its applications to extremum Seeking. IEEE Trans. Autom. Control 61(10), 90–102 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Wang, L., Han, X., Cao, Y., Najm, H.N.: Computational singular perturbation analysis of stochastic chemical systems with stiffness. J. Comput. Phys. 335, 404–425 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Weinan, E., Liu, D., Vanden-Eijnden, E.: Analysis of multiscale methods for stochastic differential equations, Commun. Pure Appl. Math. 58(1), 1544–1585 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Givon, D.: Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. SIAM J. Multi. Model. Simul. 6(2), 577–594 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Xu, J., Liu, J., Liu, J., Miao, Y.: Strong averaging principle for two-time-scale stochastic McKean–Vlasov equations. Appl. Math. Optim. 84, s837–s867 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Liu, D.: Strong convergence of principle of averaging for multiscale stochastic dynamical systems. Commun. Math. Sci. 8(4), 999–1020 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Liu, D.: Strong convergence rate of principle of averaging for jump-diffusion processes. Front. Math. China. 7(2), 305–320 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Li, X.: An averaging principle for a completely integrable stochastic Hamiltonian system. Nonlinearity 21, 803–822 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Wainrib, G.: Double averaging principle of periodically forced slow-fast stochastic systems. Electron. Commun. Probab. 18(51), 1–12 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Liu, S., Krstic, M.: Continuous-time stochastic averaging on the infinite interval for locally Lipschitz systems. SIAM J. Control. Optim. 48(5), 3589–3622 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Liu, W., Röckner, M., Sun, X., Xie, Y.: Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients. J. Differ. Equ. 268(6), 2910–2948 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Wu, F., Yin, G.: An averaging principle for two-time-scale stochastic functional differential equations. J. Differ. Equ. 269, 1037–1077 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Röckner, M., Xie, X., Sun, Y.: Strong convergence order for slow-fast McKean–Vlasov stochastic differential equations. Ann. Inst. H. Poincar Probab. Statist. 57(1), 547–576 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Sun, X., Xie, L., Xie, Y.: Averaging principle for slow-fast stochastic partial differential equations with Hölder continuous coefficients. J. Differ. Equ. 270, 476–504 (2021)

    MATH  Google Scholar 

  25. Feo, F.: The averaging principle for non-autonomous slow-fast stochastic differential equations and an application to a local stochastic volatility model. J. Differ. Equ. 302, 406–443 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Pardouxd, E., Veretennikov, AYu.: Averaging of backward stochastic differential equations, with application to semi-linear PDE’s. Stoch. Stoch. Rep. 60, 255–270 (1997)

    MathSciNet  Google Scholar 

  27. Essaky, E.H., Ouknine, Y.: Averaging of backward stochastic differential equations and homogenization of partial differential equations with periodic coefficients. Stoch. Anal. Appl. 24(2), 277–301 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Bahlali, K., Elouaflin, A., Pardoux, E.: Homogenization of semilinear PDEs with discontinuous averaged coefficients. Electron. J. Probab. 14, 477–499 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Bahlali, K., Elouaflin, A., Diop, M.A., Said, A.: A singular perturbation for non-divergence form semilinear PDEs with discontinuous effective coefficients, Preprint (2012)

  30. Bahlalia, K., Elouaflin, A., Pardoux, E.: Averaging for BSDEs with null recurrent fast component. Application to homogenization in a non periodic media. Stoch. Process. Appl. 127(4), 1321–1353 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Cohen, D., Cui, J., Hong, J., Sun, L.: Exponential integrators for stochastic Maxwell’s equations driven by Ito noise. J. Comput. Phys. 410, 109382 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Brehier, E.C., Cui, J., Hong, J.: Strong convergence rates of semidiscrete splitting approximations for the stochastic Allen–Cahn equation. IMA J. Numer. Anal. 39(4), 2096–2134 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Cui, J., Hong, J.: Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided Lipschitz coefficient. SIAM J. Numer. Anal. 57(4), 1815–1841 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Cui, J., Hong, J., Sun, L.: Strong convergence of full discretization for stochastic Cahn–Hilliard equation driven by additive noise. SIAM J. Numer. Anal. 59(6), 2866–2899 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equations. Syst. Control Lett. 14, 55–61 (1990)

    MathSciNet  MATH  Google Scholar 

  36. Antonelli, F.: Backward-forward stochastic differential equations. Ann. Appl. Probab., pp. 777–793 (1993)

  37. Hu, M., Ji, S., Xue, X.: A global stochastic maximum principle for fully coupled forward-backward stochastic systems. SIAM J. Control. Optim. 56(6), 4309–4335 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Nualart, D., Schoutens, W.: Backward stochastic differential equations and Feynman-Kac formula for L\(\acute{e}\)vy processes, with applications in finance, Bernoulli, pp. 761–776 (2001)

  39. Pardoux, E., Tang, S.: Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114(2), 123–150 (1999)

    MathSciNet  MATH  Google Scholar 

  40. Yong, J.: Forward-backward stochastic differential equations with mixed initial-terminal conditions. Trans. Am. Math. Soc. 362(2), 1047–1096 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Horst, U., Hu, Y.: P, Imkeller, et al, Forward-backward systems for expected utility maximization. Stoch. Process. Appl. 124(5), 1813–1848 (2014)

    MATH  Google Scholar 

  42. Carmona, R., Francois, D.: Forward-backward stochastic differential equations and controlled McKean–Vlasov dynamics. Ann. Probab. 43(5), 2647–2700 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Kramkov, D., Pulido, S.: Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model. SIAM J. Financ. Math. 7(1), 567–587 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Cvitani\(\acute{c}\), J., Zhang, J.: Contract Theory in Continuous-time Models, Springer, Berlin (2013)

  45. Øksendal, B.: Stochastic Differential Equations, 6th edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  46. Duan, J., Wang, W.: Effective Dynamics of Stochastic Partial Differential Equations. Elsevier, Amsterdam (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for his/her valuable suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Lian, Q. A Strong Convergence Rate of the Averaging Principle for Two-Time-Scale Forward-Backward Stochastic Differential Equations. J Theor Probab 36, 2590–2610 (2023). https://doi.org/10.1007/s10959-023-01278-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-023-01278-1

Keywords

Mathematics Subject Classification (2020)

Navigation