Skip to main content
Log in

A Selection Procedure for Extracting the Unique Feller Weak Solution of Degenerate Diffusions

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this work, we show that for the martingale problem for a class of degenerate diffusions with bounded continuous drift and diffusion coefficients, the small noise limit of non-degenerate approximations leads to a unique Feller limit. The proof uses the theory of viscosity solutions applied to the associated backward Kolmogorov equations. Under appropriate conditions on drift and diffusion coefficients, we will establish a comparison principle and a one-one correspondence between Feller solutions to the martingale problem and continuous viscosity solutions of the associated Kolmogorov equation. This work can be considered as an extension to the work in Borkar and Kumar in (J Theor Probab 23(3): 729–747, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bafico, R., Baldi, P.: Small random perturbations of Peano phenomena. Stochastics 6(3–4), 279–292 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardi, M., Dolcetta, I.C.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, vol. 12. Springer, New York (1997)

    Book  MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  4. Borkar, V., Kumar, K.S.: A new Markov selection procedure for degenerate diffusions. J. Theor. Probab. 23(3), 729–747 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buckdahn, R., Ouknine, Y., Quincampoix, M.: On limiting values of stochastic differential equations with small noise intensity tending to zero. Bull. Sci. Math. 133(3), 229–237 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delarue, F., Flandoli, F.: The transition point in the zero noise limit for a 1D Peano example. Discrete Contin. Dyn. Syst. 34(10), 4071 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delarue, F., Maurelli, M.: Zero noise limit for multidimensional SDEs driven by a pointy gradient. arXiv preprint arXiv:1909.08702 (2019)

  9. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides: Control Systems, vol. 18. Springer, New York (2013)

    Google Scholar 

  11. Flandoli, F.: Random Perturbation of PDEs and Fluid Dynamic Models: École d’été de Probabilités de Saint-Flour XL–2010, Vol. 2015. Springer, New York (2011)

  12. Flandoli, F., Högele, M.: A solution selection problem with small symmetric stable perturbations. arXiv preprint arXiv:1407.3469 (2014)

  13. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, vol. 25. Springer, New York (2006)

    MATH  Google Scholar 

  14. Gradinaru, M., Herrmann, S., Roynette, B.: A singular large deviations phenomenon. Ann. l’Inst. Henri Poincare B 37(5), 555–580 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Herrmann, S.: Phénomène de Peano et grandes déviations. C. R. Acad. Sci. Ser. I 332(11), 1019–1024 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Ishii, H., Kobayasi, K.: On the uniqueness and existence of solutions of fully nonlinear parabolic PDEs under the Osgood type condition. Differ. Integral Equ. 7(3–4), 909–920 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, vol. 113. Springer, Berlin (2012)

    MATH  Google Scholar 

  18. Kifer, J.I.: On small random perturbations of some smooth dynamical systems. Math. USSR Izvestiya 8(5), 1083 (1974)

    Article  MATH  Google Scholar 

  19. Krykun, I.G., Makhno, S.Y.: The Peano phenomenon for Itó equations. J. Math. Sci. 192(4), 441–458 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krylov, N.V.: The selection of a Markov process from a Markov system of processes. Izv. Acad. Nauk 37, 691–708 (1973). ((in Russian))

    MATH  Google Scholar 

  21. Lions, P.L.: Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations part 2: Viscosity solutions and uniqueness. Commun. Partial Differ. Equ. 8(11), 1229–1276 (1983)

    Article  MATH  Google Scholar 

  22. Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes: General Theory, vol. 394. Springer, Moskow (1977)

    Book  Google Scholar 

  23. Stroock, D.W., Varadhan, S.S.: Multidimensional Diffusion Processes, vol. 233. Springer, New York (1979)

    MATH  Google Scholar 

  24. Veretennikov, A.Y.: Approximation of ordinary differential equations by stochastic differential equations. Math. Notes 33(6), 476–477 (1983)

    Article  MATH  Google Scholar 

  25. Zhan, Y.: Viscosity solutions of nonlinear degenerate parabolic equations and several applications. Ph.D. thesis, University of Toronto (2000)

  26. Zhang, L.: Random perturbation of some multi-dimensional non-Lipschitz ordinary differential equations. arXiv preprint arXiv:1202.4131 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumith Reddy Anugu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of ASR was funded by Institute Postdoctoral Fellowship, Indian Institute of Technology Bombay. The work of VSB was supported in part by an S. S. Bhatnagar Fellowship from the Council for Scientific and Industrial Research, Government of India.

Appendix

Appendix

Lemma 5

If u and v are viscosity subsolutions of (2.1) and v is \(C^{1,2}((0,T)\times {{\mathbb {R}}}^n)\), then \(u+v\) is also a subsolution.

Proof

From the definition of viscosity subsolution, we know that when \({{\mathcal {P}}}_{{\mathcal {O}}}^{2,+} u(x,t) \ne \phi \),

$$\begin{aligned}&a- {{\mathcal {L}}}(X,p,x)\le 0, \text { for} \,(t,x)\in (0,T)\times {{\mathbb {R}}}^n \,\text {and} \,(a,p,X)\in {{\mathcal {P}}}_{{\mathcal {O}}}^{2,+} u(x,t), \end{aligned}$$
(A.1)
$$\begin{aligned}&b- {{\mathcal {L}}}(Y,q,x)\le 0, \text { for} \,(t,x)\in (0,T)\times {{\mathbb {R}}}^n\, \text {and}\, (b,q,Y)\in {{\mathcal {P}}}_{{\mathcal {O}}}^{2,+} v(x,t). \end{aligned}$$
(A.2)

From the differentiability of v and definition of \({{\mathcal {P}}}_{{\mathcal {O}}}^{2,+}\), it is clear that \({{\mathcal {P}}}_{{\mathcal {O}}}^{2,+} v(x,t)\ne \emptyset \), for every \((x,t)\in (0,T)\times {{\mathbb {R}}}^n\) and more importantly, is a singleton. Using Taylor’s theorem and the definition of \({{\mathcal {P}}}_{{\mathcal {O}}}^{2,+} v(x,t)\) (on Page 5), we have

$$\begin{aligned} v(y,s)&= v(x,t) + b (s-t) + q.(y-x)+ \frac{1}{2} (y-x)^\dagger Y(y-x) + o\left( |t-s| +\Vert x-y\Vert ^2\right) \end{aligned}$$
(A.3)

Note that the ’\(\le \)’ in the definition of \({{\mathcal {P}}}_{{\mathcal {O}}}^{2,+}\) became ’\(=\)’ because of the differentiability of v. Let \((c,r,Z)\in {{\mathcal {P}}}_{{\mathcal {O}}}^{2,+}(u+v)(x,t)\). Then we have \((c-b, r-q, Z-Y)\in {{\mathcal {P}}}_{{\mathcal {O}}}^{2,+} u(x,t)\). To see this, we use the definition of \({{\mathcal {P}}}_{{\mathcal {O}}}^{2,+}(u+v)(x,t)\):

$$\begin{aligned}{} & {} u(y,s)+v(y,s)\le u (x,t)+ v(x,t) + c (s-t) + r.(y-x)+ \frac{1}{2} (y-x)^\dagger Z(y-x) \\ {}{} & {} \quad + o\left( |t-s| +\Vert x-y\Vert ^2\right) . \end{aligned}$$

Now subtracting Equation (A.3) from the above inequality gives us the following:

$$\begin{aligned}{} & {} u(y,s)\le u (x,t) + (c-b) (s-t) + (r-q).(y-x)+ \frac{1}{2} (y-x)^\dagger (Z-Y)(y-x) \\ {}{} & {} \quad + o\left( |t-s| +\Vert x-y\Vert ^2\right) \end{aligned}$$

and this impies that \((c-b, r-q, Z-Y)\in {{\mathcal {P}}}_{{\mathcal {O}}}^{2,+} u(x,t)\). Since u is a subsolution, we have

$$\begin{aligned} c-b-{{\mathcal {L}}}(Z-Y,r-q,x)\le 0 \ \Longrightarrow \\ c-{{\mathcal {L}}}(Z,r,x)\le b-{{\mathcal {L}}}(Y,q,x)\le 0, \end{aligned}$$

from (2.6) and the linearity of \({{\mathcal {L}}}\). Finally, from the definition of viscosity subsolution, we have the result. \(\square \)

In the rest of the appendix, we assume the conditions of the statement of Lemma 2. Let \(M_{\alpha , \beta , \rho }\) be as defined in (4.2) and \(({\hat{x}},{\hat{y}}, {\hat{t}})\) is the maximizer of \(M_{\alpha , \beta , \rho }\) on \({{{\mathbb {R}}}^n}\times {{{\mathbb {R}}}^n}\times [0,T]\).

Lemma 6

[25, Pg. 29] Suppose (4.1) holds. Then there exists \(\beta _0\) and \(\rho _0\) such that for every \(\forall \alpha >0\), \(\beta <\beta _0\) and \(\rho <\rho _0\), we have the following:

$$\begin{aligned} \sup _{{{{\mathbb {R}}}^n}\times {{{\mathbb {R}}}^n}\times [0,T]}M_{\alpha , \rho ,\beta }>\eta >0. \end{aligned}$$

Proof

Let

$$\begin{aligned} \gamma \doteq \lim _{r\rightarrow 0}\sup \left\{ u(x,t)-v(y,t): \Vert x-y\Vert <r, (x,y,t) \in {{\mathbb {R}}}^n\times {{\mathbb {R}}}^n \times [0,T]\ \right\} . \end{aligned}$$

From (3.2), clearly we have,

$$\begin{aligned} \gamma \ge \sup _{ {{\mathbb {R}}}^n\times [0,T]}\left[ u(x,t)-v(x,t)\right] > \sup _{{{\mathbb {R}}}^n}\left\{ \left[ u(x,0)-v(x,0)\right] \vee 0\right\} \doteq M_b. \end{aligned}$$

For \(\epsilon >0\), there is a \(r_0\) such that for \(r<r_0\), we have

$$\begin{aligned} \sup \left\{ u(x,t)-v(y,t): \Vert x-y\Vert <r, ( x,y,t) \in {{\mathbb {R}}}^n\times {{\mathbb {R}}}^n \times [0,T]\ \right\} >\gamma -\epsilon . \end{aligned}$$

To ensure that \(\alpha \Vert x_0-y_0\Vert ^2\) is small, choose \(r< \min \{\sqrt{\frac{\varepsilon }{2\alpha }},r_0\}\). Now there exists \((x_0,y_0,t_0)\in {{\mathbb {R}}}^n\times {{\mathbb {R}}}^n \times [0,T]\) such that

$$\begin{aligned} u(x_0,t_0)-v(y_0,t_0)+\epsilon >\gamma -\epsilon \text { and } \alpha \Vert x_0-y_0\Vert ^2<\varepsilon . \end{aligned}$$

It is also clear that there exists \(\beta _0\) and \(\rho _0\) such that \(\frac{\rho }{T-t_0}<\varepsilon \) and \(\beta \Vert x_0\Vert ^2<\varepsilon \), for every \(\beta <\beta _0\) and \(\rho <\rho _0\). To summarize, we have shown that

$$\begin{aligned} M_{\alpha , \beta , \rho }(x_0,y_0,t_0)&= u(x_0,t_0)-v(y_0,t_0)-\alpha \Vert x_0-y_0\Vert ^2-\frac{\rho }{T-t_0}-\beta \Vert x_0\Vert ^2 \end{aligned}$$
(A.4)
$$\begin{aligned}&> \gamma -5\varepsilon \end{aligned}$$
(A.5)
$$\begin{aligned}&>M_b, \text { for small enough}\, \varepsilon . \end{aligned}$$
(A.6)

This concludes the proof. \(\square \)

Note that \({\hat{x}}\), \({\hat{y}}\) and \({\hat{t}}\) depend on \(\alpha \), \(\beta \) and \(\rho \). We then have:

Lemma 7

$$\begin{aligned} \lim _{\alpha \rightarrow \infty } \varlimsup _{\beta ,\rho \rightarrow 0} \alpha \Vert {\hat{x}} -{\hat{y}}\Vert ^2 =0. \end{aligned}$$

Proof

From Lemma 6, \(\sup _{{{\mathbb {R}}}^n\times {{\mathbb {R}}}^n \times [0,T]}M_{\alpha ,\beta ,\rho }>0\) and this along with the boundedness of u, v means that

$$\begin{aligned} \alpha \Vert {\hat{x}}-{\hat{y}}\Vert ^2 +\beta \Vert {\hat{x}}\Vert ^2 + \frac{\rho }{T-{\hat{t}}}\le \Vert u\Vert _\infty +\Vert v\Vert _\infty \doteq M. \end{aligned}$$

This immediately gives us

$$\begin{aligned} \Vert {\hat{x}}-{\hat{y}}\Vert \le \sqrt{\frac{M}{\alpha }}, \; \beta \Vert {\hat{x}}\Vert ^2\le M \text { and } \frac{\rho }{T-{\hat{t}}}\le M, \end{aligned}$$

then

$$\begin{aligned} \sup _{{{\mathbb {R}}}^n\times {{\mathbb {R}}}^n\times [0,T]}M_{\alpha ,\beta ,\rho }-\sup _{{{\mathbb {R}}}^n\times {{\mathbb {R}}}^n\times [0,T]}M_{\frac{\alpha }{2},\frac{\beta }{2},\frac{\rho }{2}}&\le M_{\alpha ,\beta ,\rho }({\hat{x}},{\hat{y}}, {\hat{t}})- M_{\frac{\alpha }{2},\frac{\beta }{2},\frac{\rho }{2}}({\hat{x}},{\hat{y}},{\hat{t}})\\&= -\frac{\alpha }{2}\Vert {\hat{x}}-{\hat{y}}\Vert ^2 -\frac{\beta }{2}\Vert {\hat{x}}\Vert ^2 -\frac{\rho }{2(T-{\hat{t}})} \end{aligned}$$

From Lemma 6, we know that \(M_{\alpha ,\beta ,\rho }\) is bounded away from zero from below uniformly for small enough \(\beta \) and \(\rho \) and all \(\alpha \). From the monotone convergence theorem,

$$\begin{aligned} \lim _{\alpha \rightarrow \infty } \lim _{\beta ,\rho \rightarrow 0}\left( \alpha \Vert {\hat{x}} -{\hat{y}}\Vert ^2 + \beta \Vert {\hat{x}}\Vert ^2 + \frac{\rho }{T-{\hat{t}}}\right) =0 \end{aligned}$$

and we are done. \(\square \)

Lemma 8

For uv as in Lemma 2, there exists \(\alpha _0\), \(\beta _0\) and \(\rho _0\) such that for every \(\forall \alpha >\alpha _0\), \(\beta <\beta _0\) and \(\rho <\rho _0\), we have the following:

$$\begin{aligned} \sup _{{{{\mathbb {R}}}^n}\times {{{\mathbb {R}}}^n}\times [0,T]}M_{\alpha , \rho ,\beta } > \sup _{{{\mathbb {R}}}^n}\left\{ [u(x,0)-v(x,0)]\vee 0\right\} . \end{aligned}$$

Proof

Suppose v is uniformly continuous. Assume the contrary to the statement of the lemma. Then there exists a sequence \((\alpha _n,\beta _n,\rho _n) \rightarrow (\infty , 0 ,0)\) such that the corresponding \({\hat{t}}=0\) (as \({\hat{t}}\ne T\) because of the term involving \(\rho \)). It is easy to see from definition of \(M_{\alpha ,\beta ,\rho }\), Lemmas 6 and 7 that

$$\begin{aligned} M_b<M_{\alpha _n,\beta _n,\rho _n}({\hat{x}},{\hat{y}},0)&\le u({\hat{x}},0)-v({\hat{y}},0)\\&\le v({\hat{x}},0)-v({\hat{y}},0)+ \sup _{{{\mathbb {R}}}^n}\left\{ [u(\hat{x},0)-v(\hat{x},0)]\vee 0\right\} . \end{aligned}$$

Letting \(n \rightarrow \infty \) and using uniform continuity of v, we have \(M_b < M_b\), a contradiction.\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anugu, S.R., Borkar, V.S. A Selection Procedure for Extracting the Unique Feller Weak Solution of Degenerate Diffusions. Appl Math Optim 87, 46 (2023). https://doi.org/10.1007/s00245-022-09961-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09961-1

Keywords

Mathematics Subject Classification

Navigation