Skip to main content
Log in

Various Perturbations of Time Dependent Maximal Monotone/Accretive Operators in Evolution Inclusions with Applications

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We are concerned in the present work with diverse perturbations of time dependent monotone/accretive evolution. New applications such as integral–differential Volterra perturbation, periodicity, relaxation, asymptotic properties are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Actually it is possible to prove this inclusion by using the compactness of L and the maximal monotone extension of \( \mathcal A : D(\mathcal A) \subset L_H^2(I) \rightrightarrows L_H^2(I)\) given in Lemma 3.1

  2. If \(H= \mathbb {R}^d\), one may invoke a classical fact that on bounded subsets of \(L^\infty _H\) the topology of convergence in measure coincides with the topology of uniform convergence on uniformly integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a lemma due to Grothendieck [31] [Chap. 5 Sect. 4 no 1 Prop. 1 and exercice]

  3. If \(H= \mathbb {R}^d\), one may invoke a classical fact that on bounded subsets of \(L^\infty _H\) the topology of convergence in measure coincides with the topology of uniform convergence on uniformly integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a lemma due to Grothendieck [31] [Ch. 5 Sect. 4 no 1 Prop. 1 and exercice]

  4. If \(H= \mathbb {R}^d\), one may invoke a classical fact that on bounded subsets of \(L^\infty _H\) the topology of convergence in measure coincides with the topology of uniform convergence on uniformly integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a lemma due to Grothendieck [31] [Ch. 5 Sect. 4 no 1 Prop. 1 and exercice]

References

  1. Azzam-Laouir, D., Castaing, C., Monteiro Marques, M.D.P.: Perturbed evolution problems with continuous bounded variation in time and applications. Set-Valued Var. Anal. (2017). https://doi.org/10.1007/s11228-017-0432-9

    Article  MATH  Google Scholar 

  2. Azzam-Laouir, D., Belhoula, W., Castaing, C., Monteiro Marques, M.D.P.: Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators. Evol. Equ. Control Theory 9(1), 219–254 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azzam-Laouir, D., Belhoula, W., Castaing, C., Monteiro Marques, M.D.P.: Perturbed evolution problems with absolutely continuous variation in time and application. J. Fixed Point Theory Appl. 21, 40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azzam-Laouir, D., Boutana-Harid, I.: Mixed semicontinuous perturbation to an evolution problem with time dependent maximal monotone operator. J. Nonlinear Convex Anal. 20(1), 39–52 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Azzam-Laouir, D., Izza, S., Thibault, L.: Mixed semicontinuous perturbation of nonconvex state-dependent sweeping process. Set-Valued Var. Anal. 22, 271–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bailleul, I., Brault, A., Coutin, L.: Young and rough differential inclusion. Rev. Mat. Iberoam 37, 1489–1512 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden (1976)

    Book  MATH  Google Scholar 

  8. Brogliato, B., Tanwani, A.: Dynamical systems coupled with monotone set-valued operators: formalisms, applications, well-posedness and stability. SIAM Rev. 62(1), 3–129 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouach, A., Haddad, T., Thibault, L.: Nonconvex integro-differential sweeping process with applications, arXiv:2102.11987v1 (2021)

  10. Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  11. Castaing, C., Marcellin, C.: Evolution inclusions with PLN functions and application to viscosity and control. J. Nonlinear Convex Anal. 8(2), 227–255 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Castaing, C.: Topologie de la convergence uniforme sur les parties uniformément intégrables de \(L^{1}_{E}\) et théorèmes de compacité faible dans certains espaces du type Köthe-Orlicz. Travaux Sém. Anal. Convexe 10(1), 27 (1980)

    Google Scholar 

  13. Castaing, C., Godet-Thobie, C., Mostefai, F.Z.: On a fractional differential inclusion with boundary conditions and application to subdifferential operators. J. Nonlinear Convex Anal. 18(9), 1717–1752 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Castaing, C., Godet-Thobie, C., Saidi, S.: On fractional evolution inclusion coupled with a time and state dependent maximal monotone operator. Set-Valued Var. Anal. (2021). https://doi.org/10.1007/s11228-021-00611-2

    Article  MATH  Google Scholar 

  15. Castaing, C., Monteiro Marques M.D.P., de Raynaud Fitte, P.: Second order evolution problem with time dependent maximal monotone operator and applications. Adv. Math. Econ. 22 (2018)

  16. Castaing, C., Marques, M.M., de Raynaud Fitte, P.: A Skorohod problem governed by a closed convex moving set. J. Convex Anal. 23(2), 387–423 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Castaing,C., Marie, N., Raynaud de Fitte, P.: Sweeping process perturbed by rough signal. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités. Lecture Notes in Mathematics, vol. 2301, Springer

  18. Castaing, C., de RaynaudFitte, P., Valadier, M.: Young Measures on Topological Spaces with Applications in Control Theory and Probability Theory. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  19. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  20. Cellina, A., Marchi, M.V.: Non-convex perturbations of maximal monotone differential inclusions. Israel J. Math. 46, 1–11 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Colombo, G., Fonda, A., Ornelas, A.: Lower semicontinuous perturbations of maximal monotone differential inclusions. Israel J. Math. 61, 211–118 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crandall, M.G., Nohel, J.A.: An abstract functional differential equation and a related nonlinear Volterra equation. Israël J. Math. 29, 313–328 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Crandall, M.G., Pazy, A.: Nonlinear evolution equations in Banach spaces. Israel J. Math. 11, 57–94 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Deimling, K.: Non-linear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  25. Deimling, K.: Multivalued Differential Equations. Walter de Gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  26. Falkowski, A., Słominski, L.: Sweeping processes with stochastic perturbations generated by a fractional brownian motion. ArXiv e-prints (2015)

  27. Friz, P., Victoir, N.: Multidimensional Stochastic Processes as Rough Paths, vol. 120. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  28. Fryszkowski, A.: Continuous selections for a class of non-convex multivalued maps. Studia Math. 76, 163–174 (1883)

    Article  MATH  Google Scholar 

  29. Fryszkowski, A., Gorniewicz, L.: Mixed semicontinuous mappings and their applications to differential inclusions. Set-Valued Anal. 8, 203–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gely, B.: Solutions d ’équations différentielles multivoques, Séminaire d ’Analyse Convexe Montpellier, Exposé 4 (1972)

  31. Grothendieck, A.: Espaces Vectoriels Topologiques Mat., 3rd edn. Publ. Soc, Saõ Paulo (1964)

    MATH  Google Scholar 

  32. Gutman, S.: Existence theorem for nonlinear evolution equation. Nonlinear AnaL Theory Methods Appl. 11(10), 1193–1206 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Haddad, T., Thibault, L.: Mixed semicontinuous perturbation of nonconvex sweeping process. Math. Program. Ser. B 123, 225–240 (2010)

    Article  MATH  Google Scholar 

  34. Hiai, F., Umegaki, H.: Integrals, conditional expectation, and martingales of multivalued functions. J. Multivar. Anal. 7, 149–182 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kunze, M., Monteiro Marques, M.D.P.: BV solutions to evolution problems with time-dependent domains. Set-Valued Anal. 5, 57–72 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maticiuc, L., Rascanu, A., Slominski, L., Topolewski, M.: Cadlag Skorohod problem driven by maximal monotone operator. JMAA 429, 1305–1346 (2015)

    MATH  Google Scholar 

  37. Monteiro Marques, M.D.P.: Perturbations convexes semi-continues supérieurement de problèmes d’évolution dans les espaces de Hilbert, Séminaire d’Analyse Convexe, Montpellier, vol. 14, Exposé2 (1984)

  38. Moreau, J.J.: Multiapplications à rétraction finie. Annli Scuola Normale Superiore Pisa Serie IV 1(3–4), 169–203 (1974)

    MATH  Google Scholar 

  39. Moreau, J.J., Valadier, M.: A chain rule involving vector functions of bounded variations. J. Funct. Anal. 74(2), 333–345 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Porter, J.E.: Helly selection principle for functions of bounded \(P\)-variation. Rocky Mt. J. Math. 25, 2 (2005)

    Google Scholar 

  41. Tolstonogov, A. L.: Properties of integral solutions of differential inclusions with \(m\)-accretive operators, Matematicheskie Zametki, 49(6), 119–131, (1991), (in Russian); translation in Math. Notes, 49, 636–644 (1991)

  42. Tolstonogov, A.A.: Relaxation in non-convex control problems described by first-order evolution equations. Sb. Math. 190(11), 135–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tolstonogov, A.A.: Relaxation in nonconvex optimal control problems with subdifferential operators. J. Math. Sci. 140(6), 850–872 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tolstonogov, A.: Differential Inclusions in a Banach Space. Springer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  45. Tolstonogov, A.A., Tolstonogov, D.: \(L_p\) Continuous extreme selectors of multifunctions with decomposable values: relaxation theorems. Set-Valued Anal. 4(3), 237–269 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tolstonogov, A.A., Timoshin, S.A.: Convex-valued selectors of Nemytskii operator with nonconvex values and their applications. J. Non-linear Convex Anal. 16(2), 1131–1145 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Valadier, M.: Une propriété de l’ ensemble des sélections à variation borné d une multiplication à rétraction bornée, Séminaire d Analyse convexe, Montpellier, Expos’e 13 (1977)

  48. Vladimirov, A.A.: Nonstationary dissipative evolution equations in Hilbert space. Nonlinear Anal. 17, 499–518 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vrabie, I.L.: Compactness Methods for Nonlinear Evolution Equations Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 32. Longman Scientific and Technical, Wiley, New York (1987)

    Google Scholar 

  50. Zalinescu, C.: On uniformly convex functions. J. Math. Anal. Appl. 95, 344–74 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

M.D.P. Monteiro Marques was partially supported by the Fundação para a Ciência e a Tecnologia, grant UID/MAT/04561/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Godet-Thobie.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castaing, C., Godet-Thobie, C., Saïdi, S. et al. Various Perturbations of Time Dependent Maximal Monotone/Accretive Operators in Evolution Inclusions with Applications. Appl Math Optim 87, 24 (2023). https://doi.org/10.1007/s00245-022-09898-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09898-5

Keywords

Mathematics Subject Classification

Navigation