Skip to main content
Log in

Bilinear Control of Convection-Cooling: From Open-Loop to Closed-Loop

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

This paper is concerned with a bilinear control problem for enhancing convection-cooling via an incompressible velocity field. Both optimal open-loop control and closed-loop feedback control designs are addressed. First and second order optimality conditions for characterizing the optimal solution are discussed. In particular, the method of instantaneous control is applied to establish the feedback laws. Moreover, the construction of feedback laws is also investigated by directly utilizing the optimality system with appropriate numerical discretization schemes. Computationally, it is much easier to implement the closed-loop feedback control than the optimal open-loop control, as the latter requires to solve the state equations forward in time, coupled with the adjoint equations backward in time together with a nonlinear optimality condition. Rigorous analysis and numerical experiments are presented to demonstrate our ideas and validate the efficacy of the control designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barbu, V., Marinoschi, G.: An optimal control approach to the optical flow problem. Syst. Control Lett. 87, 1–9 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bejan, A.: Convection Heat Transfer (2013). Wiley, Hoboken

  3. Bewley, T.R., Moin, P., Temam, R.: DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447(2), 179–225 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bergman, T.L., Incropera, F.P., Lavine, A.S., DeWitt, D.P.: Introduction to Heat Transfer. Wiley, Hoboken (2011)

    Google Scholar 

  5. Burns, J.A., Cliff, E.M.: Numerical methods for optimal control of heat exchangers. In: Proceedings 2014 American Control Conference, pp. 1649–1654 (2014)

  6. Burns, J.A., Kramer, B.: Full flux models for optimization and control of heat exchangers. In: Proceedings of American Control Conference (ACC), pp. 577–582. IEEE (2015)

  7. Calcagni, B., Marsili, F., Paroncini, M.: Natural convective heat transfer in square enclosures heated from below. Appl. Therm. Eng. 25(16), 2522–2531 (2005)

    Article  Google Scholar 

  8. Chang, Y., Collis, S.S.: Active control of turbulent channel flows based on large eddy simulation. In: Proceedings of the FEDSM99. ASME, vol. 6929, pp. 1–8 (1999)

  9. Chen, G., Fu, G., Singler, J., Zhang, Y.: A class of embedded DG methods for Dirichlet boundary control of convection diffusion PDEs. J. Sci. Comput. 81, 623 (2019)

    Article  MathSciNet  Google Scholar 

  10. Chen, G., Singler, J., Zhang, Y.: An HDG method for Dirichlet boundary control of convection dominated diffusion PDEs. SIAM J. Numer. Anal. 57(4), 1919–1946 (2019)

    Article  MathSciNet  Google Scholar 

  11. Chen, G., Hu, W., Shen, J., Singler, J., Zhang, Y., Zheng, X.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018)

    Article  MathSciNet  Google Scholar 

  12. Choi, H., Temam, R., Moin, P., Kim, J.: Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253, 509–543 (1993)

    Article  MathSciNet  Google Scholar 

  13. Choi, Y.: Suboptimal control of turbulent flow using control theory. In: Proceedings of the International Symposium on Mathematical Modelling of Turbulent Flows, Tokyo, Japan (1995)

  14. Choi, H., Hinze, M., Kunisch, K.: Instantaneous control of backward-facing step flows. Appl. Numer. Math. 31(2), 133–158 (1999)

    Article  MathSciNet  Google Scholar 

  15. Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press, Chicago (1988)

    Book  Google Scholar 

  16. Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math. 168, 643–674 (2008)

    Article  MathSciNet  Google Scholar 

  17. Corcione, M.: Effects of the thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above. Int. J. Therm. Sci. 42(2), 199–208 (2003)

    Article  Google Scholar 

  18. Dalal, A., Das, M.K.: Natural convection in a rectangular cavity heated from below and uniformly cooled from the top and both sides. Numer. Heat Transf. A 49(3), 301–322 (2006)

    Article  Google Scholar 

  19. Dede’, L., Quarteroni, A.: Optimal control and numerical adaptivity for advection-diffusion equations. ESAIM 39(5), 1019–1040 (2005)

    Article  MathSciNet  Google Scholar 

  20. Evans, L.C.: Partial Differential Equations, Vol. 19 of Graduate Studies in Mathematics. American Mathematical Soc, Providence (2010)

  21. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes Equations and Turbulence, vol. 83. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  22. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice-a survey. Automatica 25(3), 335–348 (1989)

    Article  Google Scholar 

  23. Glowinski, R., Song, Y., Yuan, X., Yue, H.: Bilinear optimal control of an advection-reaction-diffusion system. arXiv:2101.02629

  24. Gong, W., Hu, W., Mateos, M., Singler, J., Zhang, X., Zhang, Y.: A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: Low regularity. SIAM J. Numer. Anal. 56(4), 2262–2287 (2018)

    Article  MathSciNet  Google Scholar 

  25. Hinze, M., Kunish, K.: Control strategies for fluid flows-optimal versus suboptimal control. In: Bock H.G., et al. (eds.) ENUMATH 97, pp. 351–358 (1997)

  26. Hinze, M.: Optimal and instantaneous control of the instationary Navier-Stokes equations, (2000), Citeseer

  27. Hinze, M., Kunisch, K.: Three control methods for time-dependent fluid flow. Flow Turbul. Combust. 65(3), 273–298 (2000)

    Article  MathSciNet  Google Scholar 

  28. Hinze, M., Volkwein, S.: Analysis of instantaneous control for the Burgers equation. Nonlinear Anal. 50(1), 1–26 (2002)

    Article  MathSciNet  Google Scholar 

  29. Hu, W.: Enhancement of heat transfer in stokes flows. In: Proceedings of the 56th IEEE Conference on Decision and Control, pp. 59–63 (2017)

  30. Hu, W., San, O.: Optimal control of heat transfer in unsteady stokes flows. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 3752–3757 (2018)

  31. Hu, W.: Boundary control for optimal mixing by Stokes flows. Appl. Math. Optim. 78(1), 201–217 (2018)

    Article  MathSciNet  Google Scholar 

  32. Hu, W., Wu, J.: Boundary Control for Optimal Mixing via Navier-Stokes Flows. SIAM J. Control. Optim. 56(4), 2768–2801 (2018)

    Article  MathSciNet  Google Scholar 

  33. Hu, W.: An approximating control design for optimal mixing by Stokes flows. Appl. Math. Optim. 82, 471–498 (2020)

    Article  MathSciNet  Google Scholar 

  34. Hu, W., Wu, J.: An approximating approach for boundary control of optimal mixing via Navier-Stokes flows. J. Differ. Equ. 267(10), 5809–5850 (2019)

    Article  MathSciNet  Google Scholar 

  35. He, C., Hu, W., Mu, L.: Optimal control of convection-cooling and numerical implementation. Comput. Math. Appl

  36. Kunisch, K., Lu, X.: Optimal control for multi-phase fluid Stokes problems. Nonlinear Anal. 74(2), 585–599 (2011)

    Article  MathSciNet  Google Scholar 

  37. Kreith, F., Manglik, R.M., Bohn, M.S.: Principles of Heat Transfer. Cengage Learning, Stamford (2012)

    Google Scholar 

  38. Lee, C., Kim, J., Choi, H.: Suboptimal control of turbulent channel flow for drag reduction. J. Fluid Mech. 358, 245–258 (1998)

    Article  Google Scholar 

  39. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)

    Book  Google Scholar 

  40. Lin, Z., Thiffeault, J.-L., Doering, C.R.: Optimal stirring strategies for passive scalar mixing. J. Fluid Mech. 675, 465–476 (2011)

    Article  MathSciNet  Google Scholar 

  41. Lunasin, E., Lin, Z., Novikov, A., Mazzucato, A., Doering, C.R.: Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows. J. Math. Phys. 53(11), 115611 (2012)

    Article  MathSciNet  Google Scholar 

  42. Liu, W.: Mixing enhancement by optimal flow advection. SIAM J. Control. Optim. 47(2), 624–638 (2008)

    Article  MathSciNet  Google Scholar 

  43. Mathew, G., Mezić, I., Petzold, L.: A multiscale measure for mixing. Physica D 211(1), 23–46 (2005)

    Article  MathSciNet  Google Scholar 

  44. Mathew, G., Mezić, I., Grivopoulos, S., Vaidya, U., Petzold, L.: Optimal control of mixing in Stokes fluid flows. J. Fluid Mech. 580(1), 261–281 (2007)

    Article  MathSciNet  Google Scholar 

  45. Min, C., Choi, H.: Suboptimal feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 401, 123–156 (1999)

    Article  Google Scholar 

  46. Nevistic, V., Primbs, J.A.: Finite receding horizon control: a general framework for stability and performance analysis, preprint (1997)

  47. Rawlings, J.B., Muske, K.R.: The stability of constrained receding horizon control. IEEE Trans. Autom. Control 38(10), 1512–1516 (1993)

    Article  MathSciNet  Google Scholar 

  48. Sezai, I., Mohamad, A.A.: Natural convection in a rectangular cavity heated from below and cooled from top as well as the sides. Phys. Fluids 12(2), 432–443 (2000)

    Article  Google Scholar 

  49. Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Annales de l’institut Fourier 15(1), 189–257 (1965)

    Article  MathSciNet  Google Scholar 

  50. Temam, R.: Navier–Stokes equations and nonlinear functional analysis. SIAM (1995)

  51. Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis, Studies in Mathematics and Its Applications, Vol. 2, North-Holland

  52. Thiffeault, J.-L.: Using multiscale norms to quantify mixing and transport. Nonlinearity 25(2), R1 (2012)

    Article  MathSciNet  Google Scholar 

  53. Unger, A., Tröltzsch, F.: Fast solution of optimal control problems in the selective cooling of steel. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 81(7), 447–456 (2001)

  54. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4), 1715–1735 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

W. Hu was partially supported by the NSF Grants DMS-1813570 and DMS-2111486.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Corollary 2.5

Without loss of generality, we assume that \(\langle T_0\rangle =0\). First, using the optimality condition (2.25) together with (2.8) and (2.27), we get

$$\begin{aligned}&\int ^{t_f}_0\Vert {\mathbf {v}}\Vert ^2_{H^2} \,dt\le C\int ^{t_f}_0\Vert q\nabla T\Vert ^2_{L^2}\,dt \le C\sup _{t\in [0, t_f]}\Vert q\Vert ^2_{L^\infty }\int ^{t_f}_0\Vert \nabla T\Vert ^2_{L^2}\,dt\le C(T_0, t_f). \end{aligned}$$
(5.1)

Moreover, by (2.14) and (2.27) we have

$$\begin{aligned}&\sup _{t\in [0, t_f]}\Vert {\mathbf {v}}\Vert _{H^2} \le C\sup _{t\in [0, t_f]}\Vert q\nabla T\Vert _{L^2} \le C\sup _{t\in [0, t_f]}\Vert q\Vert _{L^\infty }\sup _{t\in [0, t_f]} \Vert \nabla T\Vert _{L^2}\le C(T_0, t_f). \end{aligned}$$
(5.2)

To obtain a higher regularity of T, we take the inner product of (2.20) with \((-\Delta )^2T\) and get

$$\begin{aligned}&\frac{1}{2}\frac{d\Vert \Delta T\Vert ^2_{L^2}}{dt}+\kappa \Vert \nabla (-\Delta T)\Vert ^2_{L^2} =-({\mathbf {v}}\cdot \nabla T, (-\Delta )^2T) =(\nabla ({\mathbf {v}}\cdot \nabla T), \nabla ((-\Delta )T))\\&\quad \le C \Vert \nabla ({\mathbf {v}}\cdot \nabla T)\Vert _{L^2}\Vert \nabla ((-\Delta )T\Vert _{L^2} \le C (\Vert \nabla {\mathbf {v}}\cdot \nabla T\Vert _{L^2}\\&\quad \,\, +\Vert {\mathbf {v}}\cdot \nabla (\nabla T)\Vert _{L^2})\Vert \nabla ((-\Delta )T\Vert _{L^2}\\&\quad \le C (\Vert \nabla {\mathbf {v}}\Vert ^2_{H^1}\Vert \Delta T\Vert ^2_{L^2}+\Vert {\mathbf {v}}\Vert ^2_{L^\infty }\Vert \Delta T\Vert ^2_{L^2}) +\frac{\kappa }{2}\Vert \nabla ((-\Delta )T\Vert ^2_{L^2}. \end{aligned}$$

This follows

$$\begin{aligned}&\frac{d\Vert \Delta T\Vert ^2_{L^2}}{dt}+\kappa \Vert \nabla ((-\Delta )T\Vert ^2_{L^2} \le C (\Vert \nabla {\mathbf {v}}\Vert ^2_{H^1}+\Vert {\mathbf {v}}\Vert ^2_{L^\infty })\Vert \Delta T\Vert ^2_{L^2} \le C\Vert {\mathbf {v}}\Vert ^2_{H^2}\Vert \Delta T\Vert ^2_{L^2}, \end{aligned}$$
(5.3)

where we used Agmon’s inequality (3.32) in the last inequality. Therefore, applying (5.1) to (5.3) yields

$$\begin{aligned}&\sup _{t\in [0, t_f]} \Vert \Delta T\Vert _{L^2} \le e^{C\int ^{t_f}_0\Vert {\mathbf {v}}\Vert ^2_{H^2}\,dt}\Vert \Delta T_0\Vert _{L^2}<\infty \end{aligned}$$
(5.4)

and

$$\begin{aligned}&\kappa \int ^{t_f}_0 \Vert \nabla ((-\Delta )T\Vert ^2_{L^2} \,dt \le C\int ^{t_f}_0\Vert {\mathbf {v}}\Vert ^2_{H^2}\Vert \Delta T\Vert ^2_{L^2}\,dt+\Vert \Delta T_0\Vert ^2_{L^2}<\infty . \end{aligned}$$
(5.5)

This completes the proof. \(\square \)

Proof of Theorem 2.6

Let \(h_i\in U_{\text {ad}}\) and \(z_i=T'({\mathbf {v}})\cdot h_i, i=1,2\). Then we have

$$\begin{aligned} \begin{aligned}&\frac{\partial z_i}{\partial t}=\kappa \Delta z_i - {\mathbf {v}}\cdot \nabla z_i - h_i \cdot \nabla T, \quad \frac{\partial z_i}{\partial n}|_{\Gamma }=0,\\&z_i(x, 0)=0. \end{aligned} \end{aligned}$$
(5.6)

In light of Corollary 2.5, we can also obtain a higher regularity of \(z_i, i=1,2,\) than (2.19). To see this, taking the inner produce of (5.6) with \(-\Delta z_i\) and noting that \(\langle z_i\rangle =0\) by (2.18), we obtain

$$\begin{aligned}&\frac{1}{2}\frac{d \Vert \nabla z_i\Vert ^2_{L^2}}{d t}+\kappa \Vert \Delta z_i\Vert ^2_{L^2}\le \Vert {\mathbf {v}}\Vert _{L^\infty } \Vert \nabla z_i\Vert _{L^2}\Vert \Delta z_i\Vert _{L^2} +\Vert h_i\Vert _{L^4}\Vert \nabla T\Vert _{L^4} \Vert \Delta z_i\Vert _{L^2}\nonumber \\&\qquad \le C \Vert {\mathbf {v}}\Vert ^2_{L^\infty } \Vert \nabla z_i\Vert ^2_{L^2} +C\Vert \nabla h_i\Vert ^2_{L^2}\Vert \Delta T\Vert ^2_{L^2} +\frac{\kappa }{2}\Vert \Delta z_i\Vert _{L^2}. \end{aligned}$$
(5.7)

Thus

$$\begin{aligned}&\frac{d \Vert \nabla z_i\Vert ^2_{L^2}}{d t}+\kappa \Vert \Delta z_i\Vert ^2_{L^2} \le C \Vert {\mathbf {v}}\Vert ^2_{L^\infty } \Vert \nabla z_i\Vert ^2_{L^2} +C\Vert \nabla h_i\Vert ^2_{L^2}\Vert \Delta T\Vert ^2_{L^2}, \end{aligned}$$

where by (5.4),

$$\begin{aligned}\int ^{t_f}_0\Vert \nabla h_i\Vert ^2_{L^2}\Vert \Delta T\Vert ^2_{L^2}\,dt \le \sup _{t\in [0, t_f]}\Vert \Delta T\Vert ^2_{L^2} \int ^{t_f}_0\Vert \nabla h_i\Vert ^2_{L^2}\,dt \le C(T_0, t_f) \Vert h_i\Vert ^2_{U_{\text {ad}}}. \end{aligned}$$

Consequently,

$$\begin{aligned}&\sup _{t\in [0, t_f]} \Vert \nabla z_i\Vert ^2_{L^2}\le \int ^{t_f}_0e^{C\int ^{t_f}_{\tau } \Vert {\mathbf {v}}\Vert ^2_{L^\infty }\,ds}\Vert \nabla h_i\Vert ^2_{L^2}\Vert \Delta T\Vert ^2_{L^2} \, d\tau \le C(T_0, t_f) \Vert h_i\Vert ^2_{U_{\text {ad}}} \end{aligned}$$
(5.8)

and

$$\begin{aligned} \kappa \int ^{t_f}_0\Vert \Delta z_i\Vert ^2_{L^2}\le C \int ^{t_f}_0 (\Vert {\mathbf {v}}\Vert ^2_{L^\infty } \Vert \nabla z_i\Vert ^2_{L^2} +\Vert \nabla h_i\Vert ^2_{L^2}\Vert \Delta T\Vert ^2_{L^2})\, dt\le C(T_0, t_f) \Vert h\Vert ^2_{U_{\text {ad}}}. \end{aligned}$$

Next, let \(Z=z'_1({\mathbf {v}})\cdot h_2\). Then Z satisfies

$$\begin{aligned}&\frac{\partial Z}{\partial t}= \kappa \Delta Z - h_2 \cdot \nabla z_1 -{\mathbf {v}}\cdot \nabla Z-h_1 \cdot \nabla z_2, \quad \frac{\partial Z}{\partial n}|_{\Gamma }=0,\nonumber \\&Z(x, 0)=0, \end{aligned}$$
(5.9)

and \(\langle Z\rangle =0\). Applying an \(L^2\)-estimate for Z gives

$$\begin{aligned}&\frac{1}{2}\frac{d\Vert Z\Vert ^2_{L^2}}{dt}+\kappa \Vert \nabla Z\Vert ^2_{L^2} \le \Vert \nabla h_2\Vert _{L^2} \Vert \nabla z_1\Vert _{L^2}\Vert \nabla Z\Vert _{L^2} +\Vert \nabla h_1\Vert _{L^2}\Vert \nabla z_2\Vert _{L^2}\Vert \nabla Z\Vert _{L^2}\\&\quad \le \Vert \nabla h_2\Vert ^2_{L^2} \Vert \nabla z_1\Vert ^2_{L^2}+\frac{\kappa }{4}\Vert \nabla Z\Vert ^2_{L^2} +\Vert \nabla h_1\Vert ^2_{L^2} \Vert \nabla z_2\Vert ^2_{L^2}+\frac{\kappa }{4}\Vert \nabla Z\Vert ^2_{L^2}, \end{aligned}$$

which, together with (5.8), follows

$$\begin{aligned}&\frac{d\Vert Z\Vert ^2_{L^2}}{dt}+\kappa \Vert \nabla Z\Vert ^2_{L^2} \le C(\Vert \nabla h_2\Vert ^2_{L^2} \Vert \nabla z_1\Vert ^2_{L^2}+\Vert \nabla h_1\Vert ^2_{L^2} \Vert \nabla z_2\Vert ^2_{L^2} )\\&\quad \le C(T_0, t_f)( \Vert \nabla h_2\Vert ^2_{L^2} \Vert h_1\Vert ^2_{U_{\text {ad}}} + \Vert \nabla h_1\Vert ^2_{L^2} \Vert h_2\Vert ^2_{U_{\text {ad}}}). \end{aligned}$$

Therefore,

$$\begin{aligned}&\Vert Z\Vert ^2_{L^2}+\kappa \int ^{t}_0\Vert \nabla Z\Vert ^2_{L^2}\,dt \le C(T_0, t_f) \Vert h_1\Vert ^2_{U_{\text {ad}}} \Vert h_2\Vert ^2_{U_{\text {ad}}}, \quad t\in [0,t_f]. \end{aligned}$$
(5.10)

By Lemma 2.2, (2.19) and (5.10), it can be easily verified that the terms on the right hand side of (5.9) are all in \(L^1(0, t_f; (H^{1}(\Omega ))')\), and hence \( \frac{\partial Z}{\partial t} \in L^1(0, t_f; (H^{1}(\Omega ))')\). Thus there exists a unique solution to (5.9), which implies that \(T({\mathbf {v}})\) is twice G\({\hat{a}}\)teaux differentiable at \({\mathbf {v}}\in U_{\text {ad}}\) satisfying the optimality condition (2.22), with respect to \(h_1\) and \(h_2\), so is \(J({\mathbf {v}})\).

Now differentiating \(J'({\mathbf {v}})\cdot h_1\) once again in the direction \(h_2\in U_{\text {ad}}\) gives

$$\begin{aligned} J''({\mathbf {v}}) \cdot (h_1,h_2)&=\alpha (D^*Dz_2(t_f), z_1(t_f)) + \alpha (D^*DT(t_f), Z(t_f)) \nonumber \\&\quad +\beta \int ^{t_f}_0(D^*Dz_2, z_1)\,dt\nonumber \\&\quad + \beta \int ^{t_f}_{0} (D^*DT, Z)\,dt + \gamma \int ^{t_f}_0(Ah_2, h_1)\,dt. \end{aligned}$$
(5.11)

Next taking the inner product of (5.9) with q and applying (2.3), we get

$$\begin{aligned} \alpha (D^*DT(t_f), Z(t_f))&-\int ^{t_f}_0\left( Z, \frac{\partial q}{\partial t}\right) \,dt=\kappa \int ^{t_f}_0(Z, \Delta q)\,dt +\int ^{t_f}_0( z_1, h_2 \cdot \nabla q) \,dt\\&+ \int ^{t_f}_0 ( Z, {\mathbf {v}}\cdot \nabla q)\,dt +\int ^{t_f}_0( z_2, h_1\cdot \nabla q)\,dt. \end{aligned}$$

With the help of the adjoint equations (2.21), we obtain

$$\begin{aligned}&\alpha (D^*D T(t_f), Z(t_f))+\beta \int ^{t_f}_0(Z, D^*DT)\,dt\\&\quad =\int ^{t_f}_0( z_1, h_2 \cdot \nabla q)\,dt+\int ^{t_f}_0( z_2, h_1\cdot \nabla q)\,dt. \end{aligned}$$

Therefore, (5.11) becomes

$$\begin{aligned} J''({\mathbf {v}}) \cdot (h_1,h_2)&= \alpha (D^*D z_2(t_f), z_1(t_f)) +\beta \int ^{t_f}_0(D^*D z_2, z_1)\,dt\\&\quad +\int ^{t_f}_0( z_1, h_2 \cdot \nabla q)\,dt\\&\quad +\int ^{t_f}_0( z_2, h_1\cdot \nabla q))\,dt + \gamma \int ^{t_f}_0(Ah_2, h_1)\,dt. \end{aligned}$$

Setting \(h_1=h_2=h\) and \(z_1=z_2=z=T'({\mathbf {v}})\cdot h\) follows

$$\begin{aligned} J''({\mathbf {v}}) \cdot (h, h)&=\alpha \Vert Dz(t_f)\Vert ^2_{L^2}+\beta \int ^{t_f}_0\Vert Dz\Vert ^2_{L^2}\,dt\nonumber \\&\quad +2\int ^{t_f}_0( z, h\cdot \nabla q)\,dt +\gamma \int ^{t_f}_0\Vert A^{1/2}h\Vert ^2_{L^2}\,dt. \end{aligned}$$
(5.12)

Furthermore, by (2.1), (2.19), (2.26) and (5.8), we get

$$\begin{aligned}&\Vert Dz(t_f)\Vert ^2_{L^2} \le \frac{C}{\kappa } \Vert T_0\Vert ^2_{L^\infty } \Vert h\Vert ^2_{U_{\text {ad}}}, \\&\int ^{t_f}_0\Vert Dz\Vert ^2_{L^2}\,dt \le C \int ^{t_f}_0\Vert \nabla z\Vert ^2_{L^2}\,dt \le \frac{C}{\kappa ^2} \Vert T_0\Vert ^2_{L^\infty } \Vert h\Vert ^2_{U_{\text {ad}}}, \end{aligned}$$

and

$$\begin{aligned}&\left| \int ^{t_f}_0( z, h\cdot \nabla q)\,dt\right| \le C\int ^{t_f}_0 \Vert \nabla z\Vert _{L^2}\Vert \nabla h\Vert _{L^2}\Vert \nabla q\Vert _{L^2}\,dt\\&\quad \le C\sup _{t\in [0, t_f]}\Vert \nabla z\Vert _{L^2}\left( \int ^{t_f}_0 \Vert \nabla h\Vert ^2_{L^2}\right) ^{1/2} \left( \int ^{t_f}_0 \Vert \nabla q\Vert ^2_{L^2}\,dt\right) ^{1/2} \le C(T_0, t_f) \Vert h\Vert ^2_{U_{\text {ad}}}. \end{aligned}$$

As a result,

$$\begin{aligned}&|J''({\mathbf {v}}) \cdot (h, h)| \le C(T_0, t_f)\left( \frac{\alpha }{\kappa }+ \frac{\beta }{\kappa ^2}\right) \Vert T_0\Vert ^2_{L^\infty } \Vert h\Vert ^2_{U_{\text {ad}}} +\gamma \Vert h\Vert ^2_{U_{\text {ad}}}\\&\quad =( C(T_0, t_f, \kappa , \alpha , \beta )+\gamma )\Vert h\Vert ^2_{U_{\text {ad}}} \end{aligned}$$

and

$$\begin{aligned} J''({\mathbf {v}}) \cdot (h, h)&\ge -2\int ^{t_f}_0( z, h\cdot \nabla q)\,dt +\gamma \int ^{t_f}_0\Vert A^{1/2}h\Vert ^2_{L^2}\,dt \\&= (\gamma -C(T_0, t_f, \kappa , \alpha , \beta ))\Vert h\Vert ^2_{U_{\text {ad}}}. \end{aligned}$$

Therefore, letting \(\gamma \) large enough such that

$$\begin{aligned} \gamma -C(T_0, t_f, \kappa , \alpha , \beta ) \ge c_0>0, \end{aligned}$$
(5.13)

we obtain (2.29). \(\square \)

Remark 5.1

For \(T_0\in L^2(\Omega )\) and \({\mathbf {v}}\in L^2(0, \infty ; H)\), \(\Vert DT\Vert _{L^2}\) obeys an exponential decay rate in time.

Proof

Taking the inner product of (1.1) with \(D^*DT\) and applying Greens’ formula and (2.3), we have

$$\begin{aligned} \frac{1}{2} \frac{d \Vert DT\Vert ^2_{L^2}}{dt}&=\kappa ( \Delta T, D^*DT)-({\mathbf {v}}\cdot \nabla T, D^*DT)\nonumber \\&=\kappa \langle \frac{\partial T}{\partial n}, D^*DT\rangle \rangle _{\Gamma } -\kappa (\nabla T, \nabla (D^*DT) )+( T, {\mathbf {v}}\cdot \nabla (D^*DT)). \end{aligned}$$
(5.14)

Since \(\langle T\rangle =\langle T_0\rangle \) and \(D^*D=D\), we have \(\nabla (D^*DT) =\nabla (DT) =\nabla (T-\langle T\rangle )=\nabla T,\) and hence using Stokes formula follows

$$\begin{aligned} ( T, {\mathbf {v}}\cdot \nabla (D^*DT))=\frac{1}{2}\int _{\Omega }{\mathbf {v}}\cdot \nabla (T^2)\,dx=0. \end{aligned}$$

Therefore, (5.14) becomes

$$\begin{aligned}&\frac{1}{2} \frac{d \Vert DT\Vert ^2_{L^2}}{dt}+\kappa \Vert \nabla (DT)\Vert ^2_{L^2}=0. \end{aligned}$$
(5.15)

Further applying Grönwall’s inequality and Poincaré inequality we derive that

$$\begin{aligned} \Vert DT\Vert ^2_{L^2}\le e^{-C\kappa t}\Vert DT_0\Vert ^2_{L^2}, \end{aligned}$$
(5.16)

which establishes the claim. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Liu, J. & Wang, Z. Bilinear Control of Convection-Cooling: From Open-Loop to Closed-Loop. Appl Math Optim 86, 5 (2022). https://doi.org/10.1007/s00245-022-09876-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09876-x

Keywords

Navigation