Skip to main content
Log in

Exact Controllability of the Wave Equation on Graphs

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper we study the exact controllability problem for the wave equation on a finite metric graph with the Kirchhoff–Neumann matching conditions. Among all vertices and edges we choose certain active vertices and edges, and give a constructive proof that the wave equation on the graph is exactly controllable if Neumann controllers are placed at the active vertices and Dirichlet controllers are placed at the active edges. The proofs for the shape and velocity controllability are purely dynamical, while the proof for the exact controllability utilizes both dynamical and moment method approaches. The control time for this construction is determined by the chosen orientation and path decomposition of the graph. We indicate the optimal time that guarantees the exact controllability for all systems of a described class on a given graph. While the choice of the active vertices and edges is not unique, we find the minimum number of controllers to guarantee the exact controllability as a graph invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alam, M., Avdonin, S., Avdonina, N.: Control problems for the telegraph and wave equation networks. J. Phys. 1847, 012015 (2021)

    Google Scholar 

  2. Avdonin, S.: Control problems on quantum graphs. In: Analysis on Graphs and Its Applications. Proceedings of Symposia in Pure Mathematics, vol. 77, pp. 507–521. AMS (2008)

  3. Avdonin, S.: Control, observation and identification problems for the wave equation on metric graphs. IFAC-PapersOnLine 52, 52–57 (2019)

    Article  MathSciNet  Google Scholar 

  4. Avdonin, S.A., Belinskiy, B.P., Ivanov, S.A.: On controllability of an elastic ring. Appl. Math. Optim. 60(1), 71–103 (2009)

    Article  MathSciNet  Google Scholar 

  5. Avdonin, S., Belinskiy, B., Pandolfi, L.: Controllability of a nonhomogeneous string and ring under time dependent tension. Math. Modell. Nat. Phenom. 5(4), 4–31 (2010)

    Article  MathSciNet  Google Scholar 

  6. Avdonin, S., Edward, J.: Exact controllability for string with attached masses. SIAM J. Control and Optim. 56(2), 945–980 (2018)

    Article  MathSciNet  Google Scholar 

  7. Avdonin, S., Edward, J., Zhao, Y.: Shape, velocity, and exact controllability for the wave equation on a graph with cycle (submitted)

  8. Avdonin, S.A., Ivanov, S.A.: Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  9. Avdonin, S., Kurasov, P.: Inverse problems for quantum trees. Inverse Probl. Imaging 2(1), 1–21 (2008)

    Article  MathSciNet  Google Scholar 

  10. Avdonin, S., Mikhaylov, V.: Controllability of partial differential equations on graphs. Appl. Math. 4(35), 379–393 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Avdonin, S., Nicaise, S.: Source identification problems for the wave equation on graphs. Inverse Prob. 31(9), 095007 (2015)

    Article  MathSciNet  Google Scholar 

  12. Avdonin, S., Zhao, Y.: Exact controllability of the 1-d wave equation on finite metric tree graphs. Appl. Math. Optim. 83(3), 2303–2326 (2021)

    Article  MathSciNet  Google Scholar 

  13. Belishev, M.I.: On the boundary controllability of a dynamical system described by the wave equation on a class of graphs (on trees). J. Math. Sci. (N.Y.) 132(1), 11–25 (2006)

  14. Belishev, M.I., Vakulenko, A.F.: Inverse problems on graphs: recovering the tree of strings by the bc-method. J. Inverse Ill-posed Probl. 14(1), 29–46 (2006)

    Article  MathSciNet  Google Scholar 

  15. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs (Mathematical Surveys and Monographs), vol. 186. American Mathematical Society, Providence, RI (2013)

    MATH  Google Scholar 

  16. Dáger, R., Zuazua, E.: Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, vol. 50. Springer, New York (2006)

    Book  Google Scholar 

  17. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

  18. Kac, I., Pivovarchik, V.: On multiplicity of a quantum graph spectrum. J. Phys. A 44(10), 105301 (2011)

    Article  MathSciNet  Google Scholar 

  19. Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms. Addison-Wesley, Reading, MA (1997)

    MATH  Google Scholar 

  20. Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: On the analysis and control of hyperbolic systems associated with vibrating networks. Proc. R. Soc. Edinburgh A 124(1), 77–104 (1994)

    Article  MathSciNet  Google Scholar 

  21. Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modeling. Analysis and Control of Dynamic Elastic Multi-link Structures. Springer, New York (2012)

    MATH  Google Scholar 

  22. Lasiecka, I., Triggiani, R.: Control theory for partial differential equations: continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon. In: Encyclopedia of Mathematics and its Applications, vol. 75. Cambridge University Press, Cambridge (2000)

  23. Lions, J.-L.: Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30(1), 1–68 (1988)

    Article  MathSciNet  Google Scholar 

  24. Mehmeti, F.A.: Nonlinear waves in networks. Math. Res. 80, 171 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Mehmeti, F.A., Meister, E.: Regular solutions of transmission and interaction problems for wave equations. Math. Methods Appl. Sci. 11(5), 665–685 (1989)

    Article  MathSciNet  Google Scholar 

  26. Rolevicz, S.: On controllability of systems of strings. Studia Math. 36(2), 110–110 (1970)

    MathSciNet  Google Scholar 

  27. Russell, D.L.: Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20(4), 639–739 (1978)

    Article  MathSciNet  Google Scholar 

  28. Szwarcfiter, J.L., Persiano, R.C.M., Oliveira, A.A.F.: Orientations with single source and sink. Discret. Appl. Math. 10(3), 313–321 (1985)

    Article  MathSciNet  Google Scholar 

  29. West, D.B.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  30. Zuazua, E: Controllability and observability of partial differential equations: some results and open problems. In: Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp. 527–621. Elsevier (2007)

  31. Zuazua, E.: Control and stabilization of waves on 1-d networks. In: Modelling and Optimisation of Flows on Networks. Lecture Notes in Math., vol. 2062, Springer, Heidelberg (2013)

Download references

Acknowledgements

The authors gratefully thank Julian Edward for very useful conversations about several parts of this manuscript and anonymous referee for valuable remarks. The research of Sergei Avdonin was supported in part by the National Science Foundation, Grant DMS 1909869. The research of Yuanyuan Zhao was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1242789.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We give equations in Sects. 3.4 and  3.7 for nonzero potentials. The solution to the forward problem for nonzero potentials are in parallel to the zero potentials case in Sect. 3.7, with Eq. (3.11) replaced by

$$\begin{aligned} f'_i(t) =&\sum _{j \in J^+(v_i) \setminus J^-(\Gamma )} \left\{ -h'_j(t)+\int _0^t (\omega _j)_x(0,s)h_j(t-s)\, ds \right. \\&-2h_j'(t-2l_j)-2\omega _j(2l_j,2l_j)h_j(t-2l_j)\\&+2\int _{2l_j}^t (\omega _j)_x(2l_j,s)h_j(t-s) \, ds \\&-2h_j'(t-4l_j)-2\omega _j(4l_j,4l_j)h_j(t-4l_j)\\&\left. +2\int _{4l_j}^t (\omega _j)_x(4l_j,s)h_j(t-s) \, ds - \dots \right\} \\&+ \sum _{j \in J^+(v_i) \setminus J^-(\Gamma )} \left\{ 2g'_{k(j)}(t-l_j)+2 \bar{\omega }_j(l_j,l_j)g_{k(j)}(t-l_j)\right. \\&-2\int _{l_j}^t (\bar{\omega }_j)_x(l_j,s) g_{k(j)}(t-s) \, ds \\&+2g'_{k(j)}(t-3_j)+2 \bar{\omega }_j(3_j,3_j)g_{k(j)}(t-3l_j)\\&\left. -2\int _{3l_j}^t (\bar{\omega }_j)_x(3l_j,s) g_{k(j)}(t-s) \, ds + \dots \right\} \\&+ \sum _{j \in J^+(v_i) \cap J^-(\Gamma )} \left\{ -h'_j(t)+\int _0^t (\omega _j)_x(0,s)h_j(t-s)\, ds \right. \\&+2h_j'(t-2l_j)+2\omega _j(2l_j,2l_j)h_j(t-2l_j)\\&-2\int _{2l_j}^t (\omega _j)_x(2l_j,s)h_j(t-s) \, ds \\&-2h_j'(t-4l_j)-2\omega _j(4l_j,4l_j)h_j(t-4l_j)\\&\left. +2\int _{4l_j}^t (\omega _j)_x(4l_j,s)h_j(t-s) \, ds + \dots \right\} \,, \end{aligned}$$

(3.12) replaced by

$$\begin{aligned} 0 =&\sum _{j \in J^-(v_i) \cap J^+(\Gamma ^*)} \left\{ -2 f_{k(j)}'(t-l_j) - 2 \mu _j(l_j,l_j) f_{k(j)}(t-l_j)\right. \\&+2 \int _{l_j}^t (\mu _j)_x(l_j,t) f_{k(j)}(t-s) \, ds \\&+2 f_{k(j)}'(t-3l_j) + 2 \mu _j(3l_j,3l_j) f_{k(j)}(t-3l_j)\\&\left. -2 \int _{3l_j}^t (\mu _j)_x(3l_j,t) f_{k(j)}(t-s) \, ds - \dots \right\} \\&+ \sum _{j \in J^-(v_i) \cap J^+(\Gamma ^*)} \left\{ -g'_i(t)+\int _0^t (\bar{\omega }_j)_x(0,s)g_i(t-s)\, ds \right. \\&+2g_i'(t-2l_j)+2\bar{\omega }_j(2l_j,2l_j)g_i(t-2l_j)-2\int _{2l_j}^t (\bar{\omega }_j)_x(2l_j,s)g_i(t-s) \, ds \\&\left. -2g_i'(t-4l_j)-2\bar{\omega }_j(4l_j,4l_j)g_i(t-4l_j)+2\int _{4l_j}^t (\bar{\omega }_j)_x(4l_j,s)g_i(t-s) \, ds - \dots \right\} \\&+\!\!\sum _{j \in J^-(v_i) \setminus J^+(\Gamma ^*)} \left\{ 2 h_j'(t-l_j) +\!2\omega _j(l_j,l_j)h_j(t-l_j)-2\int _{l_j}^t (\omega _j)_x(l_j,s)h_j(t-s) \, ds \right. \\&\left. +2 h_j'(t-3l_j) +2\omega _j(3l_j,3l_j)h_j(t-3l_j)-2\int _{3l_j}^t (\omega _j)_x(3l_j,s)h_j(t-s) \, ds +\dots \right\} \\&+ \sum _{j \in J^-(v_i) \setminus J^+(\Gamma ^*)} \left\{ -g'_i(t)+\int _0^t (\bar{\omega }_j)_x(0,s)g_i(t-s)\, ds \right. \\&-2g_i'(t-2l_j)-2\bar{\omega }_j(2l_j,2l_j)g_i(t-2l_j)+2\int _{2l_j}^t (\bar{\omega }_j)_x(2l_j,s)g_i(t-s) \, ds \\&\left. -2g_i'(t-4l_j)-2\bar{\omega }_j(4l_j,4l_j)g_i(t-4l_j)+2\int _{4l_j}^t (\bar{\omega }_j)_x(4l_j,s)g_i(t-s) \, ds - \dots \right\} \\&+ \sum _{j \in J^+(v_i) \setminus J^-(\Gamma )} \left\{ -h'_j(t)+\int _0^t (\omega _j)_x(0,s)h_j(t-s)\, ds \right. \\&-2h_j'(t-2l_j)-2\omega _j(2l_j,2l_j)h_j(t-2l_j)+2\int _{2l_j}^t (\omega _j)_x(2l_j,s)h_j(t-s) \, ds \\&\left. -2h_j'(t-4l_j)-2\omega _j(4l_j,4l_j)h_j(t-4l_j)+2\int _{4l_j}^t (\omega _j)_x(4l_j,s)h_j(t-s) \, ds - \dots \right\} \\&+ \sum _{j \in J^+(v_i) \cap J^-(\Gamma )} \left\{ -h'_j(t)+\int _0^t (\omega _j)_x(0,s)h_j(t-s)\, ds \right. \\&+2h_j'(t-2l_j)+2\omega _j(2l_j,2l_j)h_j(t-2l_j)-2\int _{2l_j}^t (\omega _j)_x(2l_j,s)h_j(t-s) \, ds \\&\left. -2h_j'(t-4l_j)-2\omega _j(4l_j,4l_j)h_j(t-4l_j)+2\int _{4l_j}^t (\omega _j)_x(4l_j,s)h_j(t-s) \, ds + \dots \right\} \\&+ \sum _{j \in J^+(v_i) \setminus J^-(\Gamma )} \left\{ 2g'_{k(j)}(t-l_j)+2 \bar{\omega }_j(l_j,l_j)g_{k(j)}(t-l_j)\right. \\&-2\int _{l_j}^t (\bar{\omega }_j)_x(l_j,s) g_{k(j)}(t-s) \, ds +2g'_{k(j)}(t-3_j)+2 \bar{\omega }_j(3_j,3_j)g_{k(j)}(t-3l_j)\\&\left. -2\int _{3l_j}^t (\bar{\omega }_j)_x(3l_j,s) g_{k(j)}(t-s) \, ds + \dots \right\} \,. \end{aligned}$$

The solution to the shape/velocity control problems for nonzero potentials are in parallel to the zero potentials case in Sect. 3.4, with Eq. (3.19) replaced by

$$\begin{aligned}&2 h_{m(i)}'(t-l_{m(i)}) +2\omega _{m(i)}(l_{m(i)}, l_{m(i)}) h_{m(i)}(t-l_{m(i)}) \\&\qquad -2\int _{l_{m(i)}}^t (\omega _{m(i)})_x(l_{m(i)},s) h_{m(i)}(t-s) \, ds \\&\quad = \sum _{j \in J^-(v_1)} \left\{ - g_1' (t) +\int _0^t (\bar{\omega }_j)_(0,s) g_1(t-s)\, ds \right\} \,, \end{aligned}$$

(3.20) replaced by

$$\begin{aligned}&h_{m(i)}(T-x)+\int _x^T \omega _{m(i)}(x,s) h_{m(i)} (T-s) \, ds \\&\quad - h_{m(i)}(T-2{m(i)}+x) -\int _{2l_{m(i)}-x}^T \omega _{m(i)}(2l_{m(i)}-x,s) h_{m(i)} (T-s) \, ds \\&\quad +g_1(T-l_{m(i)}+x) +\int _{l_{m(i)}-x}^T \bar{\omega }_{m(i)}({l_{m(i)}-x},s) g_1 (T-s) \, ds =\phi _{m(i)}(x)\,, \end{aligned}$$

(3.21) replaced by

$$\begin{aligned}&h_{j}(T-x)+\int _x^T \omega _{j}(x,s) h_{j} (T-s) \, ds +g_1(T-l_{j}+x) \\&\quad +\int _{l_j-x}^T \bar{\omega }_{j}(l_j-x,s) g_1 (T-s) \, ds =\phi _{j}(x)\,, \end{aligned}$$

(3.29) replaced by

$$\begin{aligned} 0 =&\left\{ -2 f_{k(m(i))}'(t-l_{m(i)}) - 2 \mu _{m(i)}(l_{m(i)},l_{m(i)}) f_{k(m(i))}(t-l_{m(i)}) \right. \\&+2 \int _{l_{m(i)}}^t (\mu _{m(i)})_x(l_{m(i)},t) f_{k(m(i))}(t-s) \, ds \\&+2 f_{k(m(i))}'(t-3l_{m(i)}) + 2 \mu _{m(i)}(3l_{m(i)},3l_{m(i)}) f_{k(m(i))}(t-3l_{m(i)}) \\&\left. -2 \int _{3l_{m(i)}}^t (\mu _{m(i)})_x(3l_{m(i)},t) f_{k(m(i))}(t-s) \, ds - \dots \right\} \\&+ \left\{ -g'_i(t)+\int _0^t (\bar{\omega }_{m(i)})_x(0,s)g_i(t-s)\, ds \right. \\&+2g_i'(t-2l_{m(i)})+2\bar{\omega }_{m(i)}(2l_{m(i)},2l_{m(i)})g_i(t-2l_{m(i)}) \\&-2\int _{2l_{m(i)}}^t (\bar{\omega }_{m(i)})_x(2l_{m(i)},s)g_i(t-s) \, ds \\&-2g_i'(t-4l_{m(i)})-2\bar{\omega }_{m(i)}(4l_{m(i)},4l_{m(i)})g_i(t-4l_{m(i)}) \\&\left. +2\int _{4l_{m(i)}}^t (\bar{\omega }_{m(i)})_x(4l_{m(i)},s)g_i(t-s) \, ds - \dots \right\} \\&+ \sum _{j \in J^+(v_i) \setminus J^-(\Gamma )} \left\{ -h'_j(t)+\int _0^t (\omega _j)_x(0,s)h_j(t-s)\, ds \right. \\&-2h_j'(t-2l_j)-2\omega _j(2l_j,2l_j)h_j(t-2l_j)+2\int _{2l_j}^t (\omega _j)_x(2l_j,s)h_j(t-s) \, ds \\&\left. -2h_j'(t-4l_j)-2\omega _j(4l_j,4l_j)h_j(t-4l_j)+2\int _{4l_j}^t (\omega _j)_x(4l_j,s)h_j(t-s) \, ds - \dots \right\} \\&+ \sum _{j \in J^+(v_i) \cap J^-(\Gamma )} \left\{ -h'_j(t)+\int _0^t (\omega _j)_x(0,s)h_j(t-s)\, ds \right. \\&+2h_j'(t-2l_j)+2\omega _j(2l_j,2l_j)h_j(t-2l_j)-2\int _{2l_j}^t (\omega _j)_x(2l_j,s)h_j(t-s) \, ds \\&\left. -2h_j'(t-4l_j)-2\omega _j(4l_j,4l_j)h_j(t-4l_j)+2\int _{4l_j}^t (\omega _j)_x(4l_j,s)h_j(t-s) \, ds + \dots \right\} \\&+ \sum _{j \in J^+(v_i) \setminus J^-(\Gamma )} \left\{ 2g'_{k(j)}(t-l_j)+2 \bar{\omega }_j(l_j,l_j)g_{k(j)}(t-l_j)\right. \\&-2\int _{l_j}^t (\bar{\omega }_j)_x(l_j,s) g_{k(j)}(t-s) \, ds \\&\left. +2g'_{k(j)}(t-3_j)+2 \bar{\omega }_j(3_j,3_j)g_{k(j)}(t-3l_j)\right. \\&\left. -2\int _{3l_j}^t (\bar{\omega }_j)_x(3l_j,s) g_{k(j)}(t-s) \, ds + \dots \right\} \,, \end{aligned}$$

(3.30) replaced by

$$\begin{aligned} 0 =&\left\{ 2 h_{m(i)}'(t-l_{m(i)}) +2\omega _{m(i)}(l_{m(i)},l_{m(i)})h_{m(i)}(t-l_{m(i)}) \right. \\&-2\int _{l_{m(i)}}^t (\omega _{m(i)})_x(l_{m(i)},s)h_{m(i)}(t-s) \, ds \\&+2 h_{m(i)}'(t-3l_{m(i)}) +2\omega _{m(i)}(3l_{m(i)},3l_{m(i)})h_{m(i)}(t-3l_{m(i)}) \\&\left. -2\int _{3l_{m(i)}}^t (\omega _{m(i)})_x(3l_{m(i)},s)h_{m(i)}(t-s) \, ds +\dots \right\} \\&+ \left\{ -g'_i(t)+\int _0^t (\bar{\omega }_{m(i)})_x(0,s)g_i(t-s)\, ds \right. \\&-2g_i'(t-2l_{m(i)})-2\bar{\omega }_{m(i)}(2l_{m(i)},2l_{m(i)})g_i(t-2l_{m(i)}) \\&+2\int _{2l_{m(i)}}^t (\bar{\omega }_{m(i)})_x(2l_{m(i)},s)g_i(t-s) \, ds \\&-2g_i'(t-4l_{m(i)})-2\bar{\omega }_{m(i)}(4l_{m(i)},4l_{m(i)})g_i(t-4l_{m(i)}) \\&\left. +2\int _{4l_{m(i)}}^t (\bar{\omega }_{m(i)})_x(4l_{m(i)},s)g_i(t-s) \, ds - \dots \right\} \\&+ \sum _{j \in J^+(v_i) \setminus J^-(\Gamma )} \left\{ -h'_j(t)+\int _0^t (\omega _j)_x(0,s)h_j(t-s)\, ds \right. \\&-2h_j'(t-2l_j)-2\omega _j(2l_j,2l_j)h_j(t-2l_j)+2\int _{2l_j}^t (\omega _j)_x(2l_j,s)h_j(t-s) \, ds \\&\left. -2h_j'(t-4l_j)-2\omega _j(4l_j,4l_j)h_j(t-4l_j)+2\int _{4l_j}^t (\omega _j)_x(4l_j,s)h_j(t-s) \, ds - \dots \right\} \\&+ \sum _{j \in J^+(v_i) \cap J^-(\Gamma )} \left\{ -h'_j(t)+\int _0^t (\omega _j)_x(0,s)h_j(t-s)\, ds \right. \\&+2h_j'(t-2l_j)+2\omega _j(2l_j,2l_j)h_j(t-2l_j)-2\int _{2l_j}^t (\omega _j)_x(2l_j,s)h_j(t-s) \, ds \\&\left. -2h_j'(t-4l_j)-2\omega _j(4l_j,4l_j)h_j(t-4l_j)+2\int _{4l_j}^t (\omega _j)_x(4l_j,s)h_j(t-s) \, ds + \dots \right\} \\&+ \sum _{j \in J^+(v_i) \setminus J^-(\Gamma )} \left\{ 2g'_{k(j)}(t-l_j)+2 \bar{\omega }_j(l_j,l_j)g_{k(j)}(t-l_j)\right. \\&-2\int _{l_j}^t (\bar{\omega }_j)_x(l_j,s) g_{k(j)}(t-s) \, ds +2g'_{k(j)}(t-3_j)+2 \bar{\omega }_j(3_j,3_j)g_{k(j)}(t-3l_j)\\&\left. -2\int _{3l_j}^t (\bar{\omega }_j)_x(3l_j,s) g_{k(j)}(t-s) \, ds + \dots \right\} \,. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdonin, S., Zhao, Y. Exact Controllability of the Wave Equation on Graphs. Appl Math Optim 85, 1 (2022). https://doi.org/10.1007/s00245-022-09869-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09869-w

Keywords

Mathematics Subject Classification

Navigation