Skip to main content
Log in

Well-Posedness and Stability for Schrödinger Equations with Infinite Memory

  • Original Paper
  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We study in this paper the well-posedness and stability for two linear Schrödinger equations in d-dimensional open bounded domain under Dirichlet boundary conditions with an infinite memory. First, we establish the well-posedness in the sense of semigroup theory. Then, a decay estimate depending on the smoothness of initial data and the arbitrarily growth at infinity of the relaxation function is established for each equation with the help of multipliers method and some arguments devised in (Guesmia in J Math Anal Appl 382:748–760, 2011) and (Guesmia in Applicable Anal 94:184–217, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bortot, C.A., Cavalcanti, M.M.: Asymptotic stability for the damped Schrödinger equation on noncompact Riemannian manifolds and exterior domains. Commun. Partial. Differ. Equ. 39, 1791–1820 (2014)

    Article  Google Scholar 

  2. Bortot, C.A., Cavalcanti, M.M., Corrâ, W.J., Domingos Cavalcanti, V.N.: Uniform decay rate estimates for Schrödinger and plate equations with nonlinear locally distributed damping. J. Differ. Equ. 254, 3729–3764 (2013)

    Article  Google Scholar 

  3. Brézis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4, 677–681 (1980)

    Article  MathSciNet  Google Scholar 

  4. Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Am. J. Math. 126, 569–605 (2004)

    Article  Google Scholar 

  5. Burq, N., Gérard, P., Tzvetkov, N.: On nonlinear Schrödinger equations in exterior domains. Ann. Inst. H. Poincare (C) Non Linear Anal 21, 295–318 (2004)

    Article  Google Scholar 

  6. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Natali, F.: Exponential stability for the 2-D defocusing Schrödinger equation with locally distributed damping. Differ. Integral Equ. 22, 617–636 (2009)

    MATH  Google Scholar 

  7. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A., Natali, F.: Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization. J. Differ. Equ. 248, 2955–2971 (2010)

    Article  Google Scholar 

  8. Cavalcanti, M.M., Corrêa, W.J., Lasiecka, I., Lefler, C.: Well-posedness and uniform stability for nonlinear Schrödinger equations with dynamic/Wentzell boundary conditions. Indiana Univ. Math. J. 65, 1445–1502 (2016)

    Article  MathSciNet  Google Scholar 

  9. Cavalcanti, M.M., Corrêa, W.J., Domingos Cavalcanti, V.N., Tebou, L.: Well-posedness and energy decay estimates in the Cauchy problem for the damped defocusing Schrödinger equation. J. Differ. Equ. 262, 2521–2539 (2017)

    Article  Google Scholar 

  10. Cavalcanti, M.M., Corrêa, W.J., Domingos Cavalcanti, V.N., Astudillo Rojas, M.R.: Asymptotic behavior of cubic defocusing Schrödinger equations on compact surfaces. Z. Angew. Math. Phys. (2018). https://doi.org/10.1007/s00033-018-0985-y

    Article  MATH  Google Scholar 

  11. Cavalcanti, M.M., Corrêa, W.J., Sepúlveda, M.A., Véjar-Asem, R.: Finite difference scheme for a higher order nonlinear Schrödinger equation. Calcolo 56(4), 32 (2019)

    Article  Google Scholar 

  12. Cavalcanti, M.M., Corrêa, W.J., Özsari, T., Sepúlveda, M.A., Véjar-Asem, R.: Exponential stability for the nonlinear Schrödinger equation with locally distributed damping. Commun. Partial Differ. Equ. 45(9), 1134–1167 (2020)

    Article  Google Scholar 

  13. Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  14. Clément, P., Okazawa, N., Sobajima, M., Yokota, T.: A simple approach to the Cauchy problem for complex Ginzburg-Landau equations by compactness methods. J. Differ. Equ. 253, 1250–1263 (2012)

    Article  MathSciNet  Google Scholar 

  15. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)

    Article  MathSciNet  Google Scholar 

  16. Dehman, B., Gérard, P., Lebeau, G.: Stabilization and control for the nonlinear Schrödinger equation on a compact surface. Math. Z. 254, 729–749 (2006)

    Article  MathSciNet  Google Scholar 

  17. Fernández Sare, H.D., Muñoz Rivera, J.E.: Stability of Timoshenko systems with past history. J. Math. Anal. Appl. 339, 482–502 (2008)

    Article  MathSciNet  Google Scholar 

  18. Guesmia, A.: Asymptotic stability of abstract dissipative systems with infinite memory. J. Math. Anal. Appl. 382, 748–760 (2011)

    Article  MathSciNet  Google Scholar 

  19. Guesmia, A.: Asymptotic behavior for coupled abstract evolution equations with one infinite memory. Applicable Anal. 94, 184–217 (2015)

    Article  MathSciNet  Google Scholar 

  20. Hillion, P.: Schrödinger Equation with a Cubic Nonlinearity Sech-Shaped Soliton Solutions. Opt Photonics J 2, 173–177 (2012)

    Article  Google Scholar 

  21. Kalantarov, V., Özsari, T.: Qualitative properties of solutions for nonlinear Schrödinger equations with nonlinear boundary conditions on the half-line. J. Math. Phys. 57, 021511 (2016)

  22. Lasiecka, I., Triggiani, R.: Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet control. Differ. Integral. Equ. 5, 521–535 (1992)

    MATH  Google Scholar 

  23. Lasiecka, I., Triggiani, R.: Well-posedness and sharp uniform decay rates at the \(L^2 (\Omega )\)-level of the Schrödinger equation with nonlinear boundary dissipation. J. Evol. Equ. 6, 485–537 (2006)

    Article  MathSciNet  Google Scholar 

  24. Lasiecka, I., Triggiani, R., Zhang, X.: Nonconservative Schrödinger equations with unobserved Neumann B. C.: global, uniqueness and observability in one shot. In: Analysis and Optimization of Differential Systems, Constanta, 2002, pp. 235-246. Kluwer Academic Publishers, Boston, MA (2003)

  25. Lasiecka, I., Triggiani, R., Zhang, X.: Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates, I. \(H^1 (\Omega )\)-estimates. J. Inverse Ill-Posed Probl. 12, 43–123 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Lasiecka, I., Triggiani, R., Zhang, X.: Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carleman estimates. II. \(L^2 (\Omega )\)-estimates. J. Inverse Ill-Posed Probl. 12, 183–231 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Laurent, C.: Global controllability and stabilization for the nonlinear Schrödinger equation on an interval. ESAIM Control Optim. Calc. Var. 16, 356–379 (2010)

    Article  MathSciNet  Google Scholar 

  28. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems, CRC Research Notes in Mathematics, p. 398. Chapmans and Hall, London (1999)

    Google Scholar 

  29. Machtyngier, E., Zuazua, E.: Stabilization of the Schrödinger equation. Port. Math. 51, 243–256 (1994)

    MATH  Google Scholar 

  30. Ohta, M., Todorova, G.: Remarks on global existence and blow-up for damped nonlinear Schrödinger equations. Discret. Contin. Dyn. Syst. Ser. A 23, 1313–1325 (2009)

    Article  Google Scholar 

  31. Özsari, T.: Weakly-damped focusing nonlinear Schrödinger equations with Dirichlet control. J. Math. Anal. Appl. 389, 84–97 (2012)

    Article  MathSciNet  Google Scholar 

  32. Özsari, T.: Global existence and open loop exponential stabilization of weak solutions for nonlinear Schrödinger equations with localized external Neumann manipulation. Nonlinear Anal. 80, 179–193 (2013)

    Article  MathSciNet  Google Scholar 

  33. Özsari, T.: Well-posedness for nonlinear Schrödinger equations with boundary forces in low dimensions by Strichartz estimates. J. Math. Anal. Appl. 424, 487–508 (2015)

    Article  MathSciNet  Google Scholar 

  34. Özsari, T., Kalantarov, V.K., Lasiecka, I.: Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control. J. Differ. Equ. 251, 1841–1863 (2011)

    Article  Google Scholar 

  35. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  36. Rosier, L., Zhang, B.-Y.: Exact boundary controllability of the nonlinear Schrödinger equation. J. Differ. Equ. 246, 4129–4153 (2009)

    Article  Google Scholar 

  37. Strauss, W., Bu, C.: An inhomogeneous boundary value problem for nonlinear Schrödinger equations. J. Differ. Equ. 173, 79–91 (2001)

    Article  Google Scholar 

  38. Tsutsumi, M.: Global solutions of the nonlinear Schrödinger equations in exterior domains. Commun. Partial. Differ. Equ. 8, 1337–1374 (1983)

    Article  Google Scholar 

  39. Tsutsumi, M.: On Smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in two space dimension. Nonlinear Anal. 13, 1051–1056 (1989)

    Article  MathSciNet  Google Scholar 

  40. Tsutsumi, M.: On global solutions to the initial boundary value problem for the damped nonlinear Schrödinger equations. J. Math. Anal. Appl. 145, 328–341 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was initiated during the visit in July–August 2017 of the third author to Concepción University, Chile, and finished during the visit of the fourth author in June 2018 to Lorraine—Metz university, France, and the visits in August 2018 of the third author to Concepción university, Chile, and Maringa University, Brazil. The authors thank Concepción, Lorraine—Metz and Maringa Universities for their kind support and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sepúlveda.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of M. Sepúlveda was supported FONDECYT Grant No. 1220869, ECOS-ANID project C20E03, and by Centro de Modelamiento Matemático (CMM), ACE210010 and FB210005, BASAL funds for centers of excellence from ANID-Chile. V. N. Domingos Cavalcanti, M. M. Cavalcanti and M. Sepúlveda thank the support of MATH-AMSUD project 21-MATH-03 (CTMicrAAPDEs)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcanti, M.M., Domingos Cavalcanti, V.N., Guesmia, A. et al. Well-Posedness and Stability for Schrödinger Equations with Infinite Memory. Appl Math Optim 85, 20 (2022). https://doi.org/10.1007/s00245-022-09864-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09864-1

Keywords

Mathematics Subject Classification

Navigation