Skip to main content
Log in

A Non-autonomous Damped Wave Equation with a Nonlinear Memory Term

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study a non-autonomous damped wave equation with a nonlinear memory term. By using the theory of evolution process and sectorial operators, we ensure sufficient conditions for well-posedness and spatial regularity to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press (1975)

    MATH  Google Scholar 

  2. Amann, H.: Linear and Quasilinear Parabolic Problems. I. Abstract Linear Theory. Birkhäuser Verlag, Basel (1995)

    Book  Google Scholar 

  3. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Schmeisser/Triebel: function spaces. Differential Operators and Nonlinear Analysis, Teubner Texte zur Mathematik 133, 9–126 (1993)

    Article  Google Scholar 

  4. Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  5. Carillo, S., Giorgi, C.: Non-classical memory kernels in linear viscoelasticity. In: El-Amin, M.F. (ed.) Viscoelastic and Viscoplastic Materials. IntechOpen, London (2016)

    Google Scholar 

  6. Carillo, S., Valente, V., Vergara Caffarelli, G.: A linear viscoelasticity problem with a singular memory kernel: an existence and uniqueness result. Differ. Integral Equ. 26, 1115–1125 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Carillo, S., Valente, V., Vergara Caffarelli, G.: Heat conduction with memory: a singular kernel problem. Evol. Equ. Control Theory 3(3), 399–410 (2014)

    Article  MathSciNet  Google Scholar 

  8. Carvalho, A.N., Nascimento, M.J.D.: Singularly non-autonomous semilinear parabolic problems with critical exponents. Discrete Contin. Dyn. Syst. Ser. S 2, 449–471 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Cazenave, T., Dickstein, F., Weissler, F.B.: An equation whose Fujita critical exponent is not given by scaling. Nonlinear Anal. 68(4), 862–874 (2008)

    Article  MathSciNet  Google Scholar 

  10. Ciambella, J., Paolone, A., Vidoli, S.: Memory decay rates of viscoelastic solids: not too slow, but not too fast either. Rheol. Acta 50, 661–674 (2011)

    Article  Google Scholar 

  11. D’Abbico, M.: The influence of a nonlinear memory on the damped wave equation. Non. Anal. 95, 130–145 (2014)

    Article  MathSciNet  Google Scholar 

  12. de Andrade, B., Cruz, T.S.: Regularity theory for a nonlinear fractional reaction-diffusion equation. Nonlinear Anal. 195, 111705 (2020)

    Article  MathSciNet  Google Scholar 

  13. de Andrade, B., Viana, A.: Abstract Volterra integrodifferential equations with applications to parabolic models with memory. Math. Ann. 369, 1131–1175 (2017)

    Article  MathSciNet  Google Scholar 

  14. de Andrade, B., Viana, A.: Integrodifferential equations with applications to a plate equation with memory. Math. Nachr. 2016, 1–14 (2016)

    MathSciNet  MATH  Google Scholar 

  15. de Andrade, B., Viana, A.: On a fractional reaction-diffusion equation. Z. Angew. Math. Phys. 68, 59 (2017)

    Article  MathSciNet  Google Scholar 

  16. Desch, W., Grimmer, R.: Singular relaxation moduli and smoothing in three-dimensional viscoelasticity. Trans. Am. Math. Soc. 314(1), 381–404 (1989)

    Article  MathSciNet  Google Scholar 

  17. Desch, W., Grimmer, R.: Smoothing properties of linear Volterra integro-differential equations. SIAM J. Math. Anal. 20(1), 116–132 (1989)

    Article  MathSciNet  Google Scholar 

  18. Deseri, L., Zingales, M., Pollaci, P.: The state of fractional hereditary materials (FHM). Discrete Contin. Dyn. Syst. Ser. B 19(7), 2065–2089 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  20. Fabrizio, M.: Fractional rheological models for thermomechanical systems. Dissipation and free energies. Fract. Calc. Appl. Anal. 17(1), 206–223 (2014)

    Article  MathSciNet  Google Scholar 

  21. Ferreira, J. A., Oliveira, P., Pena, G.: Decay of solutions of wave equations with memory. In: Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering (2014)

  22. Ferreira, J.A., Oliveira, P., Pena, G.: On the exponential decay of waves with memory. J. Comput. Appl. Math. 318, 460–478 (2017)

    Article  MathSciNet  Google Scholar 

  23. Fino, A.Z., Jazar, M.: Blow-up solutions of second-order differential inequalities with a nonlinear memory term. Nonlinear Anal. 75, 3122–3129 (2012)

    Article  MathSciNet  Google Scholar 

  24. Gentili, G.: Regularity and stability for a viscoelastic material with a singular memory kernel. J. Elasticity. 37(2), 139–156 (1994/95)

  25. Giorgi, C., Pata, V.: Asymptotic behavior of a nonlinear hyperbolic heat equation with memory. NoDEA Nonlinear Differ. Equ. Appl. 8(2), 157–171 (2001)

    Article  MathSciNet  Google Scholar 

  26. Hanyga, A.: Fractional-order relaxation laws in non-linear viscoelasticity. Contin. Mech. Thermodyn. 19(1–2), 25–36 (2007)

    Article  MathSciNet  Google Scholar 

  27. Heitjans, P., Kärger, J.: Diffusion in Condensed Matter. Springer, Berlin (1993)

    Google Scholar 

  28. Kafini, M., Tatar, N.: A decay result to a viscoelastic problem in ${\mathbb{R}}^n$ with an oscillating kernel. J. Math. Phys. 51, 073506 (2010)

    Article  MathSciNet  Google Scholar 

  29. Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. Trans. ASME J. Appl. Mech. 51(2), 299–307 (1984)

    Article  MathSciNet  Google Scholar 

  30. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)

    Article  MathSciNet  Google Scholar 

  31. Nohel, J.A.: A nonlinear hyperbolic Volterra equation. In: Londen, S.-O., Staffans, O. (eds.) Volterra Equations. Lecture Notes in Mathematics, vol. 737, pp. 220–235. Springer, Berlin (1979)

    Chapter  Google Scholar 

  32. Renardy, M., Hrusa, W., Nohel, J.: Mathematical Problems in Viscoelasticity. Longman Scientific and Technical (1987)

  33. Staffans, O.J.: On a nonlinear hyperbolic Volterra equation. SIAM J. Math. Anal. 11(5), 793–812 (1979)

    Article  MathSciNet  Google Scholar 

  34. Tatar, N.: Exponential decay for a viscoelastic problem with a singular kernel. Z. Angew. Math. Phys. 60(4), 640–650 (2009)

    Article  MathSciNet  Google Scholar 

  35. Uchaikin, V.: Fractional Derivatives for Physicists and Engineers. Volume I: Background and theory. Springer, Berlin (2013)

  36. Webb, G.: An abstract semilinear Volterra integrodifferential equation. Proc. Am. Math. Soc. 69, 255–260 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Nguyen Huy Tuan is thankful to the Van Lang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno de Andrade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

B. de. Andrade: Partially supported by CNPQ and CAPES/FAPITEC under grants 308931/2017-3, 88881.157450/2017-01 and 88887.157906/2017-00.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, B., Tuan, N.H. A Non-autonomous Damped Wave Equation with a Nonlinear Memory Term. Appl Math Optim 85, 36 (2022). https://doi.org/10.1007/s00245-022-09842-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09842-7

Keywords

Mathematics Subject Classification

Navigation