Skip to main content
Log in

Convergence of Discrete-Time Deterministic Games to Path-Dependent Isaacs Partial Differential Equations Under Quadratic Growth Conditions

  • Original Paper
  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider discrete-time approximations for path-dependent Isaacs partial differential equations (PDEs) of deterministic differential games under quadratic growth conditions including linear/quadratic problems with distributed and discrete delays. Owing to the path-dependence of the system, the Isaacs PDEs are defined on infinite-dimensional spaces of past state trajectories. Using the notion of viscosity solutions on the infinite-dimensional spaces as proposed by Lukoyanov based on co-invariant derivatives of path spaces, we show that the discrete-time path-dependent dynamic games converge to a unique viscosity solution for the Isaacs PDEs. Noting that these games can be practically defined on finite-dimensional spaces, we discuss finite-dimensional approximations of viscosity solutions of path-dependent Isaacs PDEs. Given an example, we derive discrete-time Riccati-type recursive equations to calculate explicit discrete-time approximations for the path-dependent linear/quadratic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (1997)

    Book  Google Scholar 

  2. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4, 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Nagai, H.: Min–max characterization of a small noise limit on risk-sensitive control. SIAM J. Control Optim. 35(4), 1093–1115 (1997)

    Article  MathSciNet  Google Scholar 

  4. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems, 2nd edn. Birkhäuser, Boston (2007)

    Book  Google Scholar 

  5. Da Lio, F., Ley, O.: Uniqueness results for second-order Bellman–Isaacs equations under quadratic growth assumptions and applications. SIAM J. Control Optim. 45(1), 74–106 (2006)

    Article  MathSciNet  Google Scholar 

  6. Dupire, B.: Functional Itô Calculus, Blooming Portfolio Research Paper, No. 2009-04-FRONTIERS (2009)

  7. Ekren, I., Keller, C., Touzi, N., Zhang, J.: On viscosity solutions of path dependent PDEs. Ann. Probab. 42(1), 204–236 (2014)

    Article  MathSciNet  Google Scholar 

  8. Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I. Ann. Probab. 44(2), 1212–1253 (2016)

    Article  MathSciNet  Google Scholar 

  9. Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II. Ann. Probab. 44(4), 2507–2553 (2016)

    Article  MathSciNet  Google Scholar 

  10. Evans, L.C., Souganidis, P.E.: Differential games and representation formulas of Hamilton–Jacobi–Isaacs equations. Indiana Univ. Math. J. 33(5), 773–797 (1984)

    Article  MathSciNet  Google Scholar 

  11. Fabbri, G., Gozzi, F., Swiech, A.: Stochastic Optimal Control in Infinite Dimension. Springer, Cham (2017)

    Book  Google Scholar 

  12. Fleming, W.H.: The convergence problem for differential games. J. Math. Anal. Appl. 3, 102–116 (1961)

    Article  MathSciNet  Google Scholar 

  13. Fleming, W.H., Soner, M.H.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  14. Friedman, A.: Differential Games. Wiley, New York (1971)

    MATH  Google Scholar 

  15. Gomoyunov, M.I., Lukoyanov, N. Yu., Plaksin, A.R.: Approximation of minimax solutions of Hamilton–Jacobi functional equations for time-delay systems. Proc. Steklov Inst. Math. 1(Suppl. 1), 68–75 (2019)

  16. Isaacs, R.: Differential Games. Wiley, New York (1965)

    MATH  Google Scholar 

  17. Kaise, H.: Path-dependent differential games of inf–sup type and Isaacs partial differential equations. In: IEEE 54th Annual Conference on Decision and Control, pp. 1972–1977 (2015)

  18. Kaise, H., Kato, T., Takahashi, Y.: Hamilton–Jacobi partial differential equations with path-dependent terminal cost under superlinear Lagrangian. In: 23rd Mathematical Theory of Networks and Systems, pp. 692–699 (2018)

  19. Kaise, H., McEneaney, W.M.: Idempotent expansions for continuous-time stochastic control. SIAM J. Control Optim. 54(1), 73–98 (2016)

    Article  MathSciNet  Google Scholar 

  20. Kim, A.V.: Functional Differential Equations: Applications of i-Smooth Calculus. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  21. Krasovskii, N.N., Lukoyanov, N. Yu.: Equations of Hamilton–Jacobi type in hereditary systems: minimax solutions. Proc. Steklov Inst. Math. Suppl. 1, 136–153 (2000)

  22. Lukoyanov, N. Yu.: Functional Hamilton–Jacobi type equations with ci-derivatives in control problems with hereditary information. Nonlinear Funct. Anal. Appl. 8(4), 534–555 (2003)

  23. Lukoyanov, N.Yu.: Approximation of the Hamilton–Jacobi functional equations in systems with hereditary information. In: Proceedings of International Seminar on Control Theory and Theory of Generalized Solutions of Hamilton–Jacobi Equations, Dedicated to the 60th Birthday of Academician A.I. Subbotin, 22–26 June 2005, Ekaterinburg, Russia, vol. 1, pp. 108–115. Ural State University Publishers, Ekaterinburg (2006)

  24. Lukoyanov, N. Yu.: On viscosity solution of functional Hamilton–Jacobi type equations for hereditary systems. Proc. Steklov Inst. Math. Suppl. 2, 190–200 (2007)

  25. Lukoyanov, N. Yu.: Viscosity solution of nonanticipating Hamilton–Jacobi equations. Differ. Equ. 43(12), 1715–1723 (2007)

  26. McEneaney, W.M.: Max-Plus Methods for Nonlinear Control and Estimation. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  27. McEneaney, W.M.: Idempotent method for dynamic games and complexity reduction in min–max expansions. In: Proceedings of the 48th IEEE Conference on Decision and Control, pp. 163–168 (2009)

  28. Peng, S.: Note on viscosity solution of path-dependent PDE and \(G\)-martingale-2nd version (2012). arXiv:1106.1144v2

  29. Pham, T., Zhang, J.: Two person zero-sum game in weak formulation and path-dependent Bellman–Isaacs equation. SIAM J. Control Optim. 52(4), 2090–2121 (2014)

    Article  MathSciNet  Google Scholar 

  30. Ren, Z., Tan, X.: On the convergence of monotone schemes for path-dependent PDE. Stoch. Process. Appl. 127, 1738–1762 (2017)

    Article  MathSciNet  Google Scholar 

  31. Ren, Z., Touzi, N., Zhang, J.: Comparison of viscosity solutions of fully nonlinear degenerate parabolic path-dependent PDEs. SIAM J. Math. Anal. 49(4), 4093–4116 (2017)

    Article  MathSciNet  Google Scholar 

  32. Souganidis, P.E.: Max–min representations and product formulas for the viscosity solutions of Hamilton–Jacobi equations with applications to differential games. Nonlinear Anal. 9(3), 217–257 (1985)

    Article  MathSciNet  Google Scholar 

  33. Tang, S., Zhang, F.: Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete Contin. Dyn. Syst. 35(11), 5521–5553 (2015)

    Article  MathSciNet  Google Scholar 

  34. Zhang, J., Zhuo, J.: Monotone schemes for fully nonlinear parabolic path dependent PDEs. J. Financ. Eng. 1(1), 1–23 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank anonymous referees for their careful readings of the manuscript and helpful comments, which helped him to greatly improve the paper. This work is partially supported by JSPS KAKENHI Grant Numbers 17K05362 and 20K03733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehiro Kaise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs of Uniform Estimates on \(\{ V^{(N)} \}_{N=1}^\infty \)

Proofs of Uniform Estimates on \(\{ V^{(N)} \}_{N=1}^\infty \)

Proof of Proposition 3.3

Let \(t_i \le t<t_{i+1}\) and \(x_t \in {\mathbf {X}}_{t}\). Suppose there exists \({\hat{K}}_{i+1} \ge 0\) such that

$$\begin{aligned} V^{(N)}(t_{i+1},y_{t_{i+1}}) \ge -{\hat{K}}_{i+1}, \quad \forall y_{t_{i+1}} \in {\mathbf {X}}_{t_{i+1}}. \end{aligned}$$

By (3.2) with (A3),

$$\begin{aligned} V^{(N)}(t,x_t)&\ge -K_l \varDelta _N-{\hat{K}}_{i+1}=:-{\hat{K}}_{i}. \end{aligned}$$

Noting that \(V^{(N)}(T,x_T) = \varPhi (x_T) \ge -K_\varPhi \), we have the recursive equation of \({\hat{K}}_i\):

$$\begin{aligned}&{\hat{K}}_N=K_\varPhi , \\&{\hat{K}}_i=K_l \varDelta _N +{\hat{K}}_{i+1} \quad (i=N-1,N-2,\ldots , 0). \end{aligned}$$

Solving the above recursive equations, we have \({\hat{K}}_0=K_\varPhi +K_lT\). Hence we obtain

$$\begin{aligned} {\hat{K}}_i \le {\hat{K}}_0=K_\varPhi +K_lT \quad (i=0,1,\ldots , N). \end{aligned}$$

Let \(t_i \le t <t_{i+1}\) and \(x_t \in {\mathbf {X}}_t\). We suppose that there exists \({\bar{K}}_{i+1} \ge 0\) such that

$$\begin{aligned} V^{(N)}(t_{i+1},y_{t_{i+1}}) \le {\bar{K}}_{i+1}(1+\Vert y_{t_{i+1}}\Vert _\infty ^2), \quad \forall y_{t_{i+1}} \in {\mathbf {X}}_{t_{i+1}}. \end{aligned}$$

Taking \(a=0\), we have from (3.2)

$$\begin{aligned} V^{(N)}(t,x_t)&\le K_l(1+\Vert x_t\Vert _\infty ^2) \varDelta _N +{\bar{K}}_{i+1} \left( 1+\sup _{b \in B}\Vert \xi _{t_{i+1}}^{(t,x_t),0,b} \Vert _\infty ^2 \right) . \end{aligned}$$

Thus, we have

$$\begin{aligned} V^{(N)}(t,x_t)&\le \left[ K_l\varDelta _N +{\bar{K}}_{i+1} \left\{ 1+2K_f(2+K_f)\varDelta _N \right\} \right] \\&\quad \times (1+\Vert x_t\Vert _\infty ^2) =:{\bar{K}}_i (1+\Vert x_t\Vert _\infty ^2), \end{aligned}$$

where we suppose \(\varDelta _N \le 1\). Recalling (A4), we have the recursive equation of \({\bar{K}}_i\):

$$\begin{aligned}&{\bar{K}}_N=K_\varPhi , \\&{\bar{K}}_{i}= K_l\varDelta _N +{\bar{K}}_{i+1} \left[ 1+2K_f(2+K_f)\varDelta _N \right] \quad (i=N-1,N-2,\ldots ,0). \end{aligned}$$

Solving the above recursive equation, we have

$$\begin{aligned} {\bar{K}}_i&\le -\frac{K_l}{2K_f(2+K_f)} +\{ 1+ 2K_f (2+K_f) \varDelta _N \}^{N} \left( K_\varPhi +\frac{K_l}{2K_f(2+K_f)} \right) . \end{aligned}$$

Noting that \(1+x \le e^x\) for \(x \ge 0\), we have

$$\begin{aligned} {\bar{K}}_i \le -\frac{K_l}{2K_f(2+K_f)} +e^{ 2K_f (2+K_f) T} \left( K_\varPhi +\frac{K_l}{2K_f(2+K_f)} \right) . \end{aligned}$$

\(\square \)

Lemma A.1

Let \(0<\epsilon <1,\) \(t_i \le t < t_{i+1}\) and \(x_t \in {\mathbf {X}}_{t}\). For given \(b, b_{k} \in B \ (k=i+1,i+2,\ldots ,N-1),\) let \(a^{\epsilon }, a^{\epsilon }_{k} \in A \ (k=i+1,i+2,\ldots , N-1)\) be given recursively in the following way:

$$\begin{aligned}&\sup _{b \in B}(T_{t,t_{i+1}}^{a^\epsilon ,b}V^{(N)}(t_{i+1},\cdot ))(x_t) < V^{(N)}(t,x_t)+\epsilon (t_{i+1}-t), \end{aligned}$$
(A.1)
$$\begin{aligned}&\sup _{b \in B} (T_{t_k, t_{k+1}}^{a^\epsilon _{k},b} V^{(N)}(t_{k+1},\cdot ))(x^\epsilon _{t_k}) < V^{(N)}(t_k, x^\epsilon _{t_k}) +\epsilon \varDelta _N, \quad \ k=i+1,\ldots , N-1, \nonumber \\ \end{aligned}$$
(A.2)

where \(x^\epsilon _{t_k} \ (k=i+1,i+2,\ldots ,N)\) are given by

$$\begin{aligned} x^\epsilon _{t_{i+1}}=\xi ^{(t,x_t),a^\epsilon ,b}_{t_{i+1}}, \quad x^\epsilon _{t_{k+1}} =\xi ^{(t_{k},x^\epsilon _{t_{k}}),a^\epsilon _{k},b_{k}}_{t_{k+1}} \quad (k=i+1,i+2,\ldots , N-1). \end{aligned}$$
(A.3)

Then there exists \(C>0\) depending only on \(K_f, K_\varPhi , K_l, T, \nu \) such that

$$\begin{aligned} |a^\epsilon |^2 (t_{i+1}-t)+\sum _{k=i+1}^{N-1}|a^\epsilon _{k}|^2\varDelta _N \le C(1+\Vert x_t\Vert _\infty ^2). \end{aligned}$$

Proof

By (A.1) and (A.2), we have

$$\begin{aligned}&l(t,x_t, a^\epsilon ,b)(t_{i+1}-t)+V^{(N)}(t_{i+1}, x^\epsilon _{t_{i+1}})<V^{(N)}(t,x_t)+\epsilon (t_{i+1}-t), \\&l(t_{k},x^\epsilon _{t_{k}},a^\epsilon _{k},b_{k})\varDelta _N +V^{(N)}(t_{k+1},x^\epsilon _{t_{k+1}}) <V^{(N)}(t_{k},x^\epsilon _{t_{k}}) +\epsilon \varDelta _N \\&(k=i+1,\ldots , N-1). \end{aligned}$$

Adding the above inequalities, we have

$$\begin{aligned}&l(t,x_t, a^\epsilon ,b)(t_{i+1}-t) +\sum _{k=i+1}^{N-1} l(t_{k},x^\epsilon _{t_{k}},a^\epsilon _{k},b_{k})\varDelta _N +\varPhi (x^\epsilon _{t_{N}}) \\&\quad <V^{(N)}(t,x_t)+\epsilon (T-t). \end{aligned}$$

Using Proposition 3.3, (A3) and (A4), we have

$$\begin{aligned} |a^\epsilon |^2(t_{i+1}-t) +\sum _{k=i+1}^{N-1}|a^\epsilon _{k}|^2\varDelta _N \le (2/\nu )\{ K(1+\Vert x_t\Vert _\infty ^2)+K_lT+K_\varPhi +T\}. \end{aligned}$$

\(\square \)

Proof of Proposition 3.4

If \(t=T\), (3.7) holds with \(L=L_\varPhi \) because of (A4). Consider the case where \(t_i \le t< t_{i+1}\). We may suppose that \(V^{(N)}(t,y_t) \ge V^{(N)}(t,x_t)\) without loss of generality. Let \(0<\epsilon <1\). Let \(k=i,i+1,\ldots , N-1\) and \(x^\epsilon _{t_k}\) and \(y^{\epsilon }_{t_k}\) be given. Here, we abuse the notation \(t=t_i\). Take \(a^\epsilon _{k} \in A\) and then \(b^\epsilon _k \in B\) such that

$$\begin{aligned}&\sup _{b \in B}(T_{t_k,t_{k+1}}^{a^\epsilon _{k},b}V^{(N)}(t_{k+1}, \cdot ))(x^\epsilon _{t_k})<V^{(N)}(t_k,x^\epsilon _{t_k}) +\epsilon \varDelta _N, \\&V^{(N)}(t_k, y^\epsilon _{t_k})< (T_{t_k, t_{k+1}}^{a^\epsilon _{k},b^\epsilon _k}V^{(N)}(t_{k+1}, \cdot ))(y^\epsilon _{t_k}) +\epsilon \varDelta _N. \end{aligned}$$

Then, we have

$$\begin{aligned} V^{(N)}(t_k,y^\epsilon _{t_k})-V^{(N)}(t_k,x^\epsilon _{t_k})&\le (l(t_k,y^\epsilon _{t_k}, a^\epsilon _k,b^\epsilon _k) -l(t_k,x^\epsilon _{t_k}, a^\epsilon _k,b^\epsilon _k))\varDelta _N \nonumber \\&\quad +V^{(N)}(t_{k+1},y^\epsilon _{t_{k+1}})-V^{(N)}(t_{k+1},x^\epsilon _{t_{k+1}})\nonumber \\&\quad +2\epsilon (t_{k+1}-t_k), \end{aligned}$$
(A.4)

where \( x^\epsilon _{t_{k+1}} =\xi ^{(t_k, x^\epsilon _{t_k}),a^\epsilon _{k},b^\epsilon _{k}}_{t_{k+1}}, \ y^\epsilon _{t_{k+1}} =\xi ^{(t_k, y^\epsilon _{t_k}),a^\epsilon _{k},b^\epsilon _{k}}_{t_{k+1}}. \) Thus we can obtain

$$\begin{aligned} V^{(N)}(t,y_t)-V^{(N)}(t,x_t)&\le \sum _{k=i}^{N-1} (l(t_{k}, y^\epsilon _{t_{k}},a^\epsilon _{k},b^\epsilon _{k}) -l(t_{k}, x^\epsilon _{t_{k}},a^\epsilon _{k},b^\epsilon _{k})) (t_{k+1}-t_{k}) \nonumber \\&\quad +\varPhi (y^\epsilon _{t_N})-\varPhi (x^\epsilon _{t_N}) +2\epsilon T. \end{aligned}$$
(A.5)

We will show that there exists \(C>0\) such that for \(k=i,i+1,\ldots , N\),

$$\begin{aligned} \Vert x^\epsilon _{t_k}\Vert _\infty \le C(1+\Vert x_t\Vert _\infty +\Vert y_t\Vert _\infty ), \quad \Vert y^\epsilon _{t_k}\Vert _\infty \le C(1+\Vert x_t\Vert _\infty +\Vert y_t\Vert _\infty ). \end{aligned}$$
(A.6)

We denote by C and \(C_j\) (\(j=1,2,\ldots \)) constants depending on \(L_f, K_f, L_l, K_l, \nu , L_\varPhi , K_\varPhi , T\) for the rest of the present proof. We will prove only the estimate of \(\Vert y^\epsilon _{t_k}\Vert _\infty \) in (A.6) because that of \(\Vert x^\epsilon _{t_k}\Vert _\infty \) can be proved similarly. By using (A2), we have

$$\begin{aligned} \Vert y^\epsilon _{t_{j+1}} \Vert _\infty&\le p \Vert y^\epsilon _{t_j} \Vert _\infty +r_{j} \quad (j=i,i+1,\ldots ,k-1), \end{aligned}$$
(A.7)

where

$$\begin{aligned} p=1+K_f\varDelta _N, \quad r_{j}=K_f(t_{j+1}-t_j)+K_f |a^\epsilon _{j}|(t_{j+1}-t_j), \end{aligned}$$

Using (A.7) recursively, we have

$$\begin{aligned} \Vert y^\epsilon _{t_k} \Vert _\infty&\le p^{k-i} \Vert y_{t}\Vert _\infty +\sum _{j=i}^{k-1}p^{k-1-j}r_j \le p^{k-i} \Vert y_{t}\Vert _\infty +p^{k-i-1}\sum _{j=i}^{k-1}r_{j}. \end{aligned}$$

Here, we use \(p \ge 1\) in the last inequality. Since \(p^N=(1+K_f\varDelta _N)^N \le e^{K_fT}\) because \(1+x \le e^x\) for \(x \ge 0\), we have

$$\begin{aligned} \Vert y^\epsilon _{t_k}\Vert _\infty&\le e^{K_fT} \Vert y_{t}\Vert _\infty +e^{K_fT}K_f T +e^{K_fT}K_f \sum _{j=i}^{N-1} |a^\epsilon _{j}| (t_{j+1}-t_j). \end{aligned}$$
(A.8)

By Cauchy–Schwarz inequality and Lemma A.1, we have

$$\begin{aligned} \sum _{j=i}^{N-1} |a^\epsilon _{l}| (t_{j+1}-t_j) \le \sqrt{T}\left\{ \sum _{j=i}^{N-1}|a^\epsilon _{l}|^2 (t_{j+1}-t_j) \right\} ^{1/2} \le C_1(1+\Vert x_t\Vert _\infty ). \qquad \end{aligned}$$
(A.9)

Hence we obtain the second inequality of (A.6).

Estimating the RHS of (A.5) with (A.6), we have

$$\begin{aligned}&\text {RHS of (A.5)} \nonumber \\&\quad \le {C}_2(1+\Vert x_t\Vert _\infty +\Vert y_t\Vert _\infty ) \left\{ \sum _{k=i}^{N-1} \Vert x^\epsilon _{t_k}-y^\epsilon _{t_k}\Vert _\infty (t_{k+1}-t_k) + \Vert x^\epsilon _{t_N}-y^\epsilon _{t_N}\Vert _\infty \right\} \nonumber \\&\qquad +C_2 \sum _{k=i}^{N-1}|a^\epsilon _{k}|\Vert x^\epsilon _{t_k} -y^\epsilon _{t_k}\Vert _\infty (t_{k+1}-t_k) +2\epsilon T. \end{aligned}$$
(A.10)

Noting that

$$\begin{aligned} \Vert x^\epsilon _{t_k}-y^\epsilon _{t_k}\Vert _\infty \le (1+L_f \varDelta _N)\Vert x^\epsilon _{t_{k-1}}-y^\epsilon _{t_{k-1}}\Vert _\infty \le (1+L_f\varDelta _N)^{k-i} \Vert x_t -y_t\Vert _\infty \end{aligned}$$

and \((1+L_f \varDelta _N)^N \le e^{L_fT}\), we have

$$\begin{aligned}&\text {RHS of (A.10)} \le C_3 \Vert x_t -y_t\Vert _\infty \\&\times \left\{ 1+\Vert x_t\Vert _\infty +\Vert y_t\Vert _\infty +\sum _{k=i}^{N-1}|a^\epsilon _{k}| (t_{k+1}-t_k) \right\} +2\epsilon T. \end{aligned}$$

By (A.9), we have

$$\begin{aligned} V^{(N)}(t,y_t)-V^{(N)}(t,x_t) \le C_4(1+\Vert x_t\Vert _\infty +\Vert y_t\Vert _\infty )\Vert x_t-y_t\Vert _\infty +2\epsilon T. \end{aligned}$$

Letting \(\epsilon \rightarrow 0\), we obtain

$$\begin{aligned} V^{(N)}(t,y_t)-V^{(N)}(t,x_t) \le {C}_4(1+\Vert x_t\Vert _\infty +\Vert y_t\Vert _\infty )\Vert x_t-y_t\Vert _\infty . \end{aligned}$$

\(\square \)

Proof of Proposition 3.5

Note that we can use Lemma 4.3 for \(\varphi =V^{(N)}\) because Proposition 3.4 holds. We suppose N is sufficiently large such that Lemma 4.3 holds for \(\varphi =V^{(N)}\). More precisely, suppose \(h_L > T/N\). We denote by \(C_i\) \((i=1,2,\ldots )\) constants depending on only \(L_f\), \(M_f\), \(K_f\), \(L_l\), \(M_l\), \(K_l\), \(\nu \), \(L_\varPhi \), \(K_\varPhi \), and T in the present proof.

Suppose \(t_i \le t< s < t_{i+1}\) and \(x_t \in {\mathbf {X}}_t\). We consider the case where \(V^{(N)}(s,x_s(\cdot \wedge t)) \ge V^{(N)}(t,x_t)\). We omit the proof for the case where \(V^{(N)}(s,x_s(\cdot \wedge t)) \le V^{(N)}(t,x_t)\) because it can be proved in a manner similar to the above case. Take \({a}^*=a^*(t,x_t;t_{i+1}-t)\) such that

$$\begin{aligned} {a}^*\in \mathop {{\text {arg} \, \text {min} }}\limits _{a \in A} \max _{b \in B} \{ l(t,x_t,a,b)(t_{i+1}-t)+V^{(N)}(t_{i+1},\xi ^{(t,x_t),a,b}_{t_{i+1}})\}. \end{aligned}$$
(A.11)

We note that from Lemma 4.3 with Proposition 3.4

$$\begin{aligned} |{a}^*| \le C_1 (1+\Vert x_t\Vert _\infty ), \end{aligned}$$
(A.12)

where \(C_1={\hat{C}}_L\) with L of Proposition 3.4 which depends on \(K_f\), \(K_l\), \(K_\varPhi \), \(L_f\), \(L_l\), \(L_\varPhi \), \(\nu \), T. Using the definitions of \(V^{(N)}(s,x_s(\cdot \wedge t))\) and \(V^{(N)}(t,x_t)\), we have

$$\begin{aligned}&V^{(N)}(s,x_s(\cdot \wedge t))-V^{(N)}(t,x_t) \nonumber \\&\quad \le \sup _{b \in B} \{ |l(t,x_t,{a}^*,b)|(s-t) +|l(s,x_s(\cdot \wedge t),{a}^*,b)-l(t,x_t,{a}^*,b)|(t_{i+1}-s) \nonumber \\&\qquad +|V^{(N)}(t_{i+1},\xi ^{(s,x_s(\cdot \wedge t)),{a}^*,b}_{t_{i+1}}) -V^{(N)}(t_{i+1},\xi ^{(t,x_t),{a}^*,b}_{t_{i+1}})| \}. \end{aligned}$$
(A.13)

By (A3) and (A.12), we have

$$\begin{aligned} |l(t,x_t,{a}^*,b)|(s-t) \le C_2(1+\Vert x_t\Vert _\infty ^2)(s-t). \end{aligned}$$
(A.14)

Similarly, by (A3) and (A.12), we have

$$\begin{aligned}&|l(s,x_s(\cdot \wedge t),{a}^*,b)-l(t,x_t,{a}^*,b)| (t_{i+1}-s) \nonumber \\&\quad \le C_3(1+\Vert x_t\Vert _\infty ^2)(t_{i+1}-s)\omega ^{t,x_t}_l(s-t) . \end{aligned}$$
(A.15)

Using Proposition 3.4, we have

$$\begin{aligned}&|V^{(N)}(t_{i+1},\xi ^{(s,x_s(\cdot \wedge t)),{a}^*,b}_{t_{i+1}}) -V^{(N)}(t_{i+1},\xi ^{(t,x_t),{a}^*,b}_{t_{i+1}})| \\&\quad \le L(1+\Vert \xi ^{(s,x_s(\cdot \wedge t)),{a}^*,b}_{t_{i+1}}\Vert _\infty +\Vert \xi ^{(t,x_t),{a}^*,b}_{t_{i+1}} \Vert _\infty ) \Vert \xi ^{(s,x_s(\cdot \wedge t)),{a}^*,b}_{t_{i+1}} -\xi ^{(t,x_t),{a}^*,b}_{t_{i+1}}\Vert _\infty . \end{aligned}$$

By the definitions of \(\xi ^{(s,x_s(\cdot \wedge t)),{a}^*,b}_{t_{i+1}}\) and \(\xi ^{(t,x_t),{a}^*,b}_{t_{i+1}}\) with (A2) and (A.12), we have

$$\begin{aligned} \Vert \xi ^{(s,x_s(\cdot \wedge t)),{a}^*,b}_{t_{i+1}}\Vert _\infty \le C_4(1+\Vert x_t\Vert _\infty ), \quad \Vert \xi ^{(t,x_t),{a}^*,b}_{t_{i+1}} \Vert _\infty \le C_4(1+\Vert x_t\Vert _\infty ). \end{aligned}$$

Using the definitions of \(\xi ^{(s,x_s(\cdot \wedge t)),{a}^*,b}_{t_{i+1}}\) and \(\xi ^{(t,x_t),{a}^*,b}_{t_{i+1}}\) with (A2) and (A.12), we have

$$\begin{aligned} \Vert \xi ^{(s,x_s(\cdot \wedge t)),{a}^*,b}_{t_{i+1}} -\xi ^{(t,x_t),{a}^*,b}_{t_{i+1}}\Vert _\infty \le C_5(1+\Vert x_t\Vert _\infty ) \{ (s-t) +(t_{i+1}-s)\omega ^{t,x_t}_f(s-t) \}. \end{aligned}$$

Thus, there exists a constant \(C_6>0\) such that

$$\begin{aligned} V^{(N)}(s,x_s(\cdot \wedge t))-V^{(N)}(t,x_t)\le & {} C_6 (1+\Vert x_t\Vert _\infty ^2) \{ (s-t) \nonumber \\&\quad +(t_{i+1}-s)\omega ^{t,x_t}(s-t) \}, \end{aligned}$$
(A.16)

where \(\omega ^{t,x_t}=\omega ^{t,x_t}_f+\omega ^{t,x_t}_l\).

We suppose \(t_i \le t <s=t_{i+1}\). Since the arguments to obtain (A.16) are valid for \(s=t_{i+1}\), we have

$$\begin{aligned} V^{(N)}(t_{i+1},x_{t_{i+1}}(\cdot \wedge t))-V^{(N)}(t,x_t) \le C_6 (1+\Vert x_t\Vert _\infty ^2) (t_{i+1}-t). \end{aligned}$$

From the definition of \(V^{(N)}(t,x_t)\), we have

$$\begin{aligned} V^{(N)}(t,x_t) =\inf _{a \in A} \sup _{b \in B} \{ l(t,x_t,a,b)(t_{i+1}-t) +V^{(N)}(t_{i+1},\xi _{t_{i+1}}^{(t,x_t),a,b}) \} \end{aligned}$$

from which we have

$$\begin{aligned}&V^{(N)}(t,x_t)-V^{(N)}(t_{i+1},x_{t_{i+1}}(\cdot \wedge t)) \nonumber \\&\quad =\inf _{a \in A} \sup _{b \in B} \{ l(t,x_t,a,b)(t_{i+1}-t) +V^{(N)}(t_{i+1},\xi _{t_{i+1}}^{(t,x_t),a,b})\nonumber \\&\qquad -V^{(N)}(t_{i+1},x_{t_{i+1}}(\cdot \wedge t)) \}. \end{aligned}$$
(A.17)

If we take \(a=0\), we have

$$\begin{aligned}&V^{(N)}(t,x_t)-V^{(N)}(t_{i+1},x_{t_{i+1}}(\cdot \wedge t)) \\&\quad \le \sup _{b \in B} \{ l(t,x_t,0,b)(t_{i+1}-t) +V^{(N)}(t_{i+1},\xi _{t_{i+1}}^{(t,x_t),0,b}) -V^{(N)}(t_{i+1},x_{t_{i+1}}(\cdot \wedge t)) \} \\&\quad \le \sup _{b \in B}|l(t,x_t,0,b)|(t_{i+1}-t) +\sup _{b \in B} |V^{(N)}(t_{i+1},\xi _{t_{i+1}}^{(t,x_t),0,b})\\&\qquad -V^{(N)}(t_{i+1},x_{t_{i+1}}(\cdot \wedge t))|. \end{aligned}$$

By (A3), we have

$$\begin{aligned} \sup _{b \in B}|l(t,x_t,0,b)|(t_{i+1}-t) \le C_7 (1+\Vert x_t\Vert _\infty ^2) (t_{i+1}-t). \end{aligned}$$

Using Proposition 3.4 and (A2), we have

$$\begin{aligned}&|V^{(N)}(t_{i+1},\xi _{t_{i+1}}^{(t,x_t),0,b}) -V^{(N)}(t_{i+1},x_{t_{i+1}}(\cdot \wedge t))| \\&\quad \le L(1+\Vert x_t\Vert _\infty +\Vert \xi _{t_{i+1}}^{(t,x_t),0,b}\Vert _\infty ) \Vert x_{t_{i+1}}(\cdot \wedge t)-\xi _{t_{i+1}}^{(t,x_t),0,b}\Vert _\infty \\&\quad \le C_8 (1+\Vert x_t\Vert _\infty ^2)(t_{i+1}-t). \end{aligned}$$

Thus, we obtain

$$\begin{aligned} V^{(N)}(t,x_t)-V^{(N)}(t_{i+1},x_{t_{i+1}}(\cdot \wedge t)) \le (C_7+C_8)(1+\Vert x_t\Vert _\infty ^2)(t_{i+1}-t). \end{aligned}$$

Hence, we have

$$\begin{aligned} |V^{(N)}(t_{i+1},x_{t_{i+1}}(\cdot \wedge t))-V^{(N)}(t,x_t)| \le C_9(1+\Vert x_t\Vert _\infty ^2)(t_{i+1}-t). \end{aligned}$$

Suppose \(0 \le t_i \le t<t_{i+1} \le t_j < s \le t_{j+1}\). Note that

$$\begin{aligned}&|V^{(N)}(s,x_s(\cdot \wedge t))-V^{(N)}(t,x_t)| \nonumber \\&\quad \le |V^{(N)}(s,x_s(\cdot \wedge t))-V^{(N)}(t_j, x_{t_j}(\cdot \wedge t))| \nonumber \\&\qquad +\sum _{k=i+1}^{j-1}|V^{(N)}(t_{k+1},x_{t_{k+1}}(\cdot \wedge t)) -V^{(N)}(t_{k},x_{t_{k}}(\cdot \wedge t))| \nonumber \\&\qquad +|V^{(N)}(t_{i+1},x_{t_{i+1}}(\cdot \wedge t))-V^{(N)}(t,x_t)|. \end{aligned}$$
(A.18)

Let \(t_j<s<t_{j+1}\). Applying the first case of (3.8) (resp. the second case of (3.8)) to the first term of (A.18) (resp. the second and third terms of (A.18)), we have

$$\begin{aligned} \text {RHS of (A.18)}&\le C_{10}(1+\Vert x_{t}\Vert _\infty ^2) \{(s-t_j)+(t_{j+1}-s)\omega ^{t,x_t}(s-t_j)\} \\&\quad +\sum _{k=i+1}^{j-1} C_{10}(1+\Vert x_t\Vert _\infty ^2)(t_{k+1}-t_{k}) +C_{10}(1+\Vert x_t\Vert _\infty ^2)(t_{i+1}-t) \\&=C_{10}(1+\Vert x_{t}\Vert _\infty ^2)\{ (s-t)+(t_{j+1}-s)\omega ^{t,x_t}(s-t_j) \}. \end{aligned}$$

Let \(t_j<s =t_{j+1}\). Applying the second case of (3.8) to each term of (A.18), we obtain

$$\begin{aligned} \text {RHS of (A.18)}&\le C_{11}(1+\Vert x_{t}\Vert _\infty ^2) (s-t_j) \\&\quad +\sum _{k=i+1}^{j-1} C_{11}(1+\Vert x_t\Vert _\infty ^2)(t_{k+1}-t_{k}) +C_{11}(1+\Vert x_t\Vert _\infty ^2)(t_{i+1}-t) \\&=C_{11}(1+\Vert x_{t}\Vert _\infty ^2)(s-t). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaise, H. Convergence of Discrete-Time Deterministic Games to Path-Dependent Isaacs Partial Differential Equations Under Quadratic Growth Conditions. Appl Math Optim 86, 13 (2022). https://doi.org/10.1007/s00245-022-09829-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09829-4

Keywords

Mathematics Subject Classification

Navigation