Skip to main content
Log in

Topology Optimization for Steady-State Anisothermal Flow Targeting Solids with Piecewise Constant Thermal Diffusivity

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

Several engineering problems result in a PDE-constrained optimization problem that aims at finding the shape of a solid inside a fluid which minimizes a given cost function. These problems are categorized as Topology Optimization (TO) problems. In order to tackle these problems, the solid may be located with a penalization term added in the constraints equations that vanishes in fluid regions and becomes large in solid regions. This paper addresses a TO problem for anisothermal flows modelled by the steady-state incompressible Navier–Stokes system coupled to an energy equation, with mixed boundary conditions, under the Boussinesq approximation. We first prove the existence and uniqueness of a solution to these equations as well as the convergence of its finite element discretization. Next, we show that our TO problem has at least one optimal solution for cost functions that satisfy general assumptions. The convergence of discrete optimum toward the continuous one is then proved as well as necessary first order optimality conditions. Eventually, all these results let us design a numerical algorithm to solve a TO problem approximating solids with piecewise constant thermal diffusivities also refered as multi-materials. A physical problem solved numerically for varying parameters concludes this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://osur-devspot.univ-reunion.fr/avieira/tossaf_pctd

References

  1. Akçelik, V., Biros, G., Ghattas, O., Hill, J., Keyes, D., van Bloemen Waanders, B.: Parallel algorithms for PDE-constrained optimization. In: Parallel Processing for Scientific Computing, pp. 291–322. SIAM (2006)

  2. Alexandersen, J., Andreasen, C.S.: A review of topology optimisation for fluid-based problems. Fluids 5(1), 29 (2020)

    Article  Google Scholar 

  3. Alexandersen, J., Aage, N., Andreasen, C.S., Sigmund, O.: Topology optimisation for natural convection problems. Int. J. Numer. Methods Fluids 76(10), 699–721 (2014)

    Article  MathSciNet  Google Scholar 

  4. Alexandersen, J., Sigmund, O., Aage, N.: Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int. J. Heat Mass Transf. 100, 876–891 (2016)

    Article  Google Scholar 

  5. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems, vol. 254. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  6. Amstutz, S.: The topological asymptotic for the Navier-Stokes equations. ESAIM Control Optim. Calculus Variat. 11(3), 401–425 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Angot, P., Bruneau, C.H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Antil, H., Kouri, D..P., Lacasse, M..D., Ridzal, D.: Frontiers in PDE-Constrained Optimization, vol. 163. Springer, New York (2018)

    Book  MATH  Google Scholar 

  9. Banks, T..H., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Springer, New York (2012)

    MATH  Google Scholar 

  10. Bernardi, C., Canuto, C., Maday, Y.: Spectral approximations of the Stokes equations with boundary conditions on the pressure. SIAM J. Numer. Anal. 28(2), 333–362 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bernardi, C., Chacón Rebollo, T., Yakoubi, D.: Finite element discretization of the Stokes and Navier-Stokes equations with boundary conditions on the pressure. SIAM J. Numer. Anal. 53(3), 1256–1279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Biros, G., Ghattas, O.: Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part I: the Krylov–Schur solver. SIAM J. Sci. Comput. 27(2), 687–713 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boland, J., Layton, W.: Error analysis for finite element methods for steady natural convection problems. Numer. Funct. Anal. Optim. 11(5–6), 449–483 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Borrvall, T., Petersson, J.: Topology optimization of fluids in Stokes flow. Int. J. Numer. Method Fluids 41(1), 77–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  16. Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of nonlinear problems. Numer. Math. 36(1), 1–25 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bruns, T.E.: Topology optimization of convection-dominated, steady-state heat transfer problems. Int. J. Heat Mass Transf. 50(15–16), 2859–2873 (2007)

    Article  MATH  Google Scholar 

  18. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caubet, F., Conca Rosende, C., Godoy, M.: On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives. Inverse Probl. Imaging 10, 327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, Z., Zou, J.: An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems. SIAM J. Control. Optim. 37(3), 892–910 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cioaca, A., Alexe, M., Sandu, A.: Second-order adjoints for solving PDE-constrained optimization problems. Optim. Methods Softw. 27(4–5), 625–653 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cipolla, S., Durastante, F.: Fractional PDE constrained optimization: an optimize-then-discretize approach with L-BFGS and approximate inverse preconditioning. Appl. Numer. Math. 123, 43–57 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cocquet, P.H., Rakotobe, M., Ramalingom, D., Bastide, A.: Error analysis for the finite element approximation of the Darcy–Brinkman–Forchheimer model for porous media with mixed boundary conditions. J. Comput. Appl. Math. 381, 113008 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cocquet, P.H., Riffo, S., Salomon, J.: Optimization of bathymetry for long waves with small amplitude. SIAM J. Control Optim. 59(6), 4429–4456 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Colmenares, E., Gatica, G.N., Oyarzúa, R.: A posteriori error analysis of an augmented fully-mixed formulation for the stationary Boussinesq model. Comput. Math. Appl. 77(3), 693–714 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dbouk, T.: A review about the engineering design of optimal heat transfer systems using topology optimization. Appl. Therm. Eng. 112, 841–854 (2017)

    Article  Google Scholar 

  27. Durastante, F., Cipolla, S.: Fractional PDE constrained optimization: Box and sparse constrained problems. In: Falcone, M., Ferretti, R., Grüne, L., McEneaney, W. M. (eds.) Numerical Methods for Optimal Control Problems, pp. 111–135. Springer (2018)

  28. Ern, A., Guermond, J..L.: Theory and Practice of Finite Elements, vol. 159. Springer, New York (2013)

    MATH  Google Scholar 

  29. Evans, L..C., Gariepy, R..F.: Measure Theory and Fine Properties of Functions. Chapman and Hall/CRC, Boca Raton (2015)

    Book  MATH  Google Scholar 

  30. Evgrafov, A.: The limits of porous materials in the topology optimization of Stokes flows. Appl. Math. Optim. 52(3), 263–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Feppon, F., Allaire, G., Bordeu, F., Cortial, J., Dapogny, C.: Shape optimization of a coupled thermal fluid-structure problem in a level set mesh evolution framework. SeMA J. 76(3), 413–458 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Galdi, G.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems. Springer, New York (2011)

    Book  MATH  Google Scholar 

  33. Garcke, H., Hinze, M., Kahle, C., Lam, K.F.: A phase field approach to shape optimization in Navier–Stokes flow with integral state constraints. Adv. Comput. Math. 44(5), 1345–1383 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 749. Springer, New York (1979)

    Book  MATH  Google Scholar 

  35. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer, New York (2012)

    MATH  Google Scholar 

  36. Gunzburger, M.D., Hou, S.L.: Finite-dimensional approximation of a class of constrained nonlinear optimal control problems. SIAM J. Control Optim. 34(3), 1001–1043 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Haslinger, J., Mäkinen, R.A.: On a topology optimization problem governed by two-dimensional Helmholtz equation. Comput. Optim. Appl. 62(2), 517–544 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Herzog, R., Kunisch, K.: Algorithms for PDE-constrained optimization. GAMM-Mitteilungen 33(2), 163–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hinze, M., Quyen, T.N.T.: Finite element approximation of source term identification with TV-regularization. Inverse Probl. 35(12), 124004 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, vol. 23. Springer, New York (2008)

    MATH  Google Scholar 

  41. Hvejsel, C.F., Lund, E.: Material interpolation schemes for unified topology and multi-material optimization. Struct. Multidiscip. Optim. 43(6), 811–825 (2011)

    Article  MATH  Google Scholar 

  42. Logg, A., Wells, G.N.: DOLFIN: automated finite element computing. ACM Trans. Math. Softw. 37(2), 1–28 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Long, K., Wang, X., Gu, X.: Multi-material topology optimization for the transient heat conduction problem using a sequential quadratic programming algorithm. Eng. Optim. 50(12), 2091–2107 (2018)

    Article  MathSciNet  Google Scholar 

  44. Mohammadi, B., Pironneau, O.: Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36, 255–279 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  46. Novotny, A.A., Sokołowski, J., Żochowski, A.: Topological derivatives of shape functionals. Part II: first-order method and applications. J. Optim. Theory Appl. 180(3), 683–710 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Otárola, E., Quyen, T.N.T.: A reaction coefficient identification problem for fractional diffusion. Inverse Probl. 35(4), 045010 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. Othmer, C.: A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int. J. Numer. Method Fluids 58(8), 861–877 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Othmer, C., Grahs, T.: Approaches to fluid dynamic optimization in the car development process. In: Proceedings of the EUROGEN Conference, Munich (2005)

  50. Ramalingom, D., Cocquet, P.H., Bastide, A.: A new interpolation technique to deal with fluid-porous media interfaces for topology optimization of heat transfer. Comput. Fluids 168, 144–158 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ramalingom, D., Cocquet, P.H., Maleck, R., Bastide, A.: A multi-objective optimization problem in mixed and natural convection for a vertical channel asymmetrically heated. Struct. Multidiscip. Optim. 60(5), 2001–2020 (2019)

    Article  MathSciNet  Google Scholar 

  52. Schulz, V.H., Siebenborn, M., Welker, K.: Efficient PDE constrained shape optimization based on Steklov–Poincaré-type metrics. SIAM J. Optim. 26(4), 2800–2819 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Taylor, C., Hood, P.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1(1), 73–100 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  54. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, vol. 343. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  55. Wein, F., Chen, N., Iqbal, N., Stingl, M., Avila, M.: Topology optimization of unsaturated flows in multi-material porous media: application to a simple diaper model. Commun. Nonlinear Sci. Numer. Simul. 78, 104871 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zuo, W., Saitou, K.: Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim. 55(2), 477–491 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

All the authors are supported by the “Agence Nationale de la Recherche” (ANR), Project O-TO-TT-FU number ANR-19-CE40-0011. The used code for this article is available at https://osur-devspot.univ-reunion.fr/avieira/tossaf_pctd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Vieira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, A., Bastide, A. & Cocquet, PH. Topology Optimization for Steady-State Anisothermal Flow Targeting Solids with Piecewise Constant Thermal Diffusivity. Appl Math Optim 85, 41 (2022). https://doi.org/10.1007/s00245-022-09828-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-022-09828-5

Keywords

Mathematics Subject Classification

Navigation