Skip to main content
Log in

Path-Dependent Hamilton–Jacobi Equations: The Minimax Solutions Revised

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

Motivated by optimal control problems and differential games for functional differential equations of retarded type, the paper deals with a Cauchy problem for a path-dependent Hamilton–Jacobi equation with a right-end boundary condition. Minimax solutions of this problem are studied. The existence and uniqueness result is obtained under assumptions that are weaker than those considered earlier. In contrast to previous works, on the one hand, we do not require any properties concerning positive homogeneity of the Hamiltonian in the impulse variable, and on the other hand, we suppose that the Hamiltonian satisfies a Lipshitz continuity condition with respect to the path variable in the uniform (supremum) norm. The progress is related to the fact that a suitable Lyapunov–Krasovskii functional is built that allows to prove a comparison principle. This functional is in some sense equivalent to the square of the uniform norm of the path variable and, at the same time, it possesses appropriate smoothness properties. In addition, the paper provides non-local and infinitesimal criteria of minimax solutions, their stability with respect to perturbations of the Hamiltonian and the boundary functional, as well as consistency of the approach with the non-path-dependent case. Connection of the problem statement under consideration with some other possible statements (regarding the choice of path spaces and derivatives used) known in the theory of path-dependent Hamilton–Jacobi equations is discussed. Some remarks concerning viscosity solutions of the studied Cauchy problem are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.P., Haddad, G.: History path dependent optimal control and portfolio valuation and management. Positivity 6(3), 331–358 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bayraktar, E., Keller, C.: Path-dependent Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal. 275(8), 2096–2161 (2018)

    Article  MathSciNet  Google Scholar 

  3. Cosso, A., Russo, F.: Crandall–Lions viscosity solutions for path-dependent PDEs: The case of heat equation. arXiv:1911.13095 (2019)

  4. Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282(2), 487–582 (1984)

  5. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

  6. Dupire, B.: Functional Itô calculus (2009) https://ssrn.com/abstract=1435551

  7. Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I. Ann. Probab. 44(2), 1212–1253 (2016)

    Article  MathSciNet  Google Scholar 

  8. Gomoyunov, M.I.: Dynamic programming principle and Hamilton-Jacobi-Bellman equations for fractional-order systems. SIAM J. Control Optim. 58(6), 3185–3211 (2020)

    Article  MathSciNet  Google Scholar 

  9. Gomoyunov, M.I., Lukoyanov, N.Y., Plaksin, A.R.: Approximation of minimax solutions of Hamilton-Jacobi functional equations for time-delay systems. Proc. Steklov Inst. Math. 304(Suppl. 1), S68–S75 (2019)

    Article  Google Scholar 

  10. Ji, S., Yang, S.: A note on functional derivatives on continuous paths. Stat. Probab. Lett. 106, 176–183 (2015)

    Article  MathSciNet  Google Scholar 

  11. Kaise, H.: Path-dependent differential games of inf-sup type and Isaacs partial differential equations. In: Proceedings of the 54th IEEE Conference on Decision and Control (CDC), pp. 1972–1977. Osaka, Japan (2015)

  12. Kaise, H., Kato, T., Takahashi, Y.: Hamilton–Jacobi partial differential equations with path-dependent terminal costs under superlinear Lagrangians. In: Proceedings of the 23rd International Symposium on Mathematical Theory of Networks and Systems (MTNS), pp. 692–699. Hong Kong University of Science and Technology (2018)

  13. Kelley, J.L.: General Topology. Springer, New York (1975)

    MATH  Google Scholar 

  14. Kim, A.V.: Lyapunov 2-nd method for systems with aftereffect. Differ. Equ. 21(3), 244–249 (1985)

    Google Scholar 

  15. Kim, A.V.: Functional Differential Equations: Application of \(i\)-Smooth Calculus. Kluwer Academic Publishers, Dordrecht (1999)

  16. Krasovskii, A.N., Krasovskii, N.N.: Control Under Lack of Information. Birkhäuser, Boston (1995)

  17. Krasovskii, N.N.: Stability of Motion: Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay. Stanford University Press, Stanford, CA (1963)

    MATH  Google Scholar 

  18. Krasovskii, N.N.: On the problem of the unification of differential games. Dokl. Akad. Nauk SSSR 226(6), 1260–1263 (1976)

    MathSciNet  Google Scholar 

  19. Krasovskii, N.N., Lukoyanov, N.Y.: Equations of the Hamilton-Jacobi type in hereditary systems: minimax solutions. Proc. Steklov Inst. Math. Suppl. 1, S136–S153 (2000)

  20. Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer, New York (1988)

    Book  Google Scholar 

  21. Lukoyanov, N.Y.: A Hamilton-Jacobi type equation in control problems with hereditary information. J. Appl. Math. Mech. 64(2), 243–253 (2000)

    Article  MathSciNet  Google Scholar 

  22. Lukoyanov, N.Y.: Minimax solutions of functional equations of the Hamilton-Jacobi type for hereditary systems. Differ. Equ. 37(2), 246–256 (2001)

    Article  MathSciNet  Google Scholar 

  23. Lukoyanov, N.Y.: The properties of the value functional of a differential game with hereditary information. J. Appl. Math. Mech. 65(3), 361–370 (2001)

    Article  MathSciNet  Google Scholar 

  24. Lukoyanov, N.Y.: Functional Hamilton-Jacobi type equations in \(ci\)-derivatives for systems with distributed delays. Nonlinear Funct. Anal. Appl. 8(3), 365–397 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Lukoyanov, N.Y.: Functional Hamilton-Jacobi type equations with \(ci\)-derivatives in control problems with hereditary information. Nonlinear Funct. Anal. Appl. 8(4), 535–555 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Lukoyanov, N.Y.: Strategies for aiming in the direction of invariant gradients. J. Appl. Math. Mech. 68(4), 561–574 (2004)

    Article  MathSciNet  Google Scholar 

  27. Lukoyanov, N.Y.: Differential inequalities for a nonsmooth value functional in control systems with an aftereffect. Proc. Steklov Inst. Math. 255(Suppl. 2), S103–S114 (2006)

    Article  MathSciNet  Google Scholar 

  28. Lukoyanov, N.Y.: On viscosity solution of functional Hamilton-Jacobi type equations for hereditary systems. Proc. Steklov Inst. Math. 259(Suppl. 2), S190–S200 (2007)

    Article  MathSciNet  Google Scholar 

  29. Lukoyanov, N.Y.: Minimax and viscosity solutions in optimization problems for hereditary systems. Proc. Steklov Inst. Math. 269(Suppl. 2), S214–S225 (2010)

    Article  MathSciNet  Google Scholar 

  30. Lukoyanov, N.Y.: Functional Hamilton-Jacobi Equations and Control Problems with Hereditary Information. Ural Federal University Publ, Ekaterinburg (2011). (in Russian)

  31. Lukoyanov, N.Y., Gomoyunov, M.I.: Differential games on minmax of the positional quality index. Dyn. Games Appl. 9(3), 780–799 (2019)

    Article  MathSciNet  Google Scholar 

  32. Lukoyanov, N.Y., Gomoyunov, M.I., Plaksin, A.R.: Hamilton-Jacobi functional equations and differential games for neutral-type systems. Dokl. Math. 96(3), 654–657 (2017)

    Article  MathSciNet  Google Scholar 

  33. Pham, T., Zhang, J.: Two person zero-sum game in weak formulation and path dependent Bellman-Isaacs equation. SIAM J. Control Optim. 52(4), 2090–2121 (2014)

    Article  MathSciNet  Google Scholar 

  34. Plaksin, A.R.: Minimax solution of functional Hamilton-Jacobi equations for neutral type systems. Differ. Equ. 55(11), 1475–1484 (2019)

    Article  MathSciNet  Google Scholar 

  35. Plaksin, A.R.: On Hamilton-Jacobi-Bellman-Isaacs equation for time-delay systems. IFAC-PapersOnLine 52(18), 138–143 (2019)

    Article  MathSciNet  Google Scholar 

  36. Plaksin, A.R.: Minimax and viscosity solutions of Hamilton-Jacobi-Bellman equations for time-delay systems. J. Optim. Theory Appl. 187(1), 22–42 (2020)

    Article  MathSciNet  Google Scholar 

  37. Plaksin, A.R.: Viscosity solutions of Hamilton–Jacobi–Bellman–Isaacs equations for time-delay systems. SIAM J. Control Optim. 59(3), 1951–1972 (2021)

  38. Saporito, Y.F.: Stochastic control and differential games with path-dependent influence of controls on dynamics and running cost. SIAM J. Control Optim. 57(2), 1312–1327 (2019)

    Article  MathSciNet  Google Scholar 

  39. Sendov, B.: Hausdorff Approximations. Kluwer Academic Publishers, Dordrecht (1990)

  40. Soner, H.M.: On the Hamilton-Jacobi-Bellman equations in Banach spaces. J. Optim. Theory Appl. 57(3), 429–437 (1988)

    Article  MathSciNet  Google Scholar 

  41. Subbotin, A.I.: Existence and uniqueness results for Hamilton-Jacobi equations. Nonlinear Anal. 16(7/8), 683–699 (1991)

    Article  MathSciNet  Google Scholar 

  42. Subbotin, A.I.: Minimax Inequalities and Hamilton-Jacobi Equations. Nauka Publ, Moscow (1991). [in Russian]

    MATH  Google Scholar 

  43. Subbotin, A.I.: Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  44. Tang, S., Zhang, F.: Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete Contin. Dyn. Syst. 35(11), 5521–5553 (2015)

    Article  MathSciNet  Google Scholar 

  45. Zhou, J.: Delay optimal control and viscosity solutions to associated Hamilton-Jacobi-Bellman equations. Int. J. Control 92(10), 2263–2273 (2019)

    Article  MathSciNet  Google Scholar 

  46. Zhou, J.: Viscosity solutions to first order path-dependent HJB equations. arXiv:2004.02095 (2020)

  47. Zhou, J.: Viscosity solutions to second order path-dependent Hamilton–Jacobi–Bellman equations and applications. arXiv:2005.05309 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail I. Gomoyunov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Proposition 3

Let a functional \(\varphi : [0, T] \times C([- h, T], \mathbb {R}^n) \rightarrow \mathbb {R}\) be non-anticipative and continuous and satisfy boundary condition (9). By Proposition 2, the functional \(\varphi \) is a minimax solution of problem (8), (9) if and only if it possesses properties (M*) and (M*). Observe that together properties (M*) and (M*) are nothing more than property (MC) for the particular characteristic complex \((\mathbb {R}^n, E) \in \mathcal {E}^*(H) \cap \mathcal {E}_*(H)\), defined in accordance with (20). Thus, it remains to show that if \(\varphi \) satisfies (MC) for an upper \((Q, E^*) \in \mathcal {E}^*(H)\) and a lower \((P, E_*) \in \mathcal {E}_*(H)\) characteristic complexes, then \(\varphi \) satisfies both (M*) and (M*). Below, we prove property (M*) only, while property (M*) is verified in a similar way. Moreover, note that, proving (M*), we use only the facts that \(\varphi \) is non-anticipative and lower semicontinuous and the part of (MC) that concerns the upper characteristic complex \((Q, E^*)\).

Arguing by contradiction, assume that there are \((t, x(\cdot )) \in [0, T) \times C([- h, T], \mathbb {R}^n)\), \(s \in \mathbb {R}^n\), and \(\tau \in (t, T]\) such that, for any characteristic \((y(\cdot ), z(\cdot )) \in CH(t, x(\cdot ), s)\), the inequality \(\varphi (\tau , y(\cdot )) - \varphi (t, x(\cdot )) > z(\tau )\) holds. Then, there exists \(\varepsilon > 0\) such that

$$\begin{aligned} \min _{(y(\cdot ), z(\cdot )) \in CH(t, x(\cdot ), s)} \big ( \varphi (\tau , y(\cdot )) - z(\tau ) \big ) > \varphi (t, x(\cdot )) + \varepsilon . \end{aligned}$$
(37)

Here, the minimum is attained owing to lower semicontinuity of the functional \(\varphi \) and compactness of the set of characteristics \(CH(t, x(\cdot ), s)\) in \(C([- h, T], \mathbb {R}^n) \times C([- h, T], \mathbb {R})\) (see, e.g., [24, Proposition 4.1]). Denote

$$\begin{aligned} \beta (\xi ) = \varphi (t, x(\cdot )) + \varepsilon (\xi - t) / (\tau - t), \quad \xi \in [t, \tau ], \end{aligned}$$
(38)

and put

$$\begin{aligned} \xi _0 = \sup \big \{ \xi \in [t, \tau ]: \, \min _{(y(\cdot ), z(\cdot )) \in CH(t, x(\cdot ), s)} \big ( \varphi (\xi , y(\cdot )) - z(\xi ) \big ) \le \beta (\xi ) \big \}. \end{aligned}$$
(39)

Observe that \(\varphi (t, y(\cdot )) - z(t) = \varphi (t, x(\cdot )) = \beta (t)\) for any \((y(\cdot ), z(\cdot )) \in CH(t, x(\cdot ), s)\), since \(\varphi \) is non-anticipative and initial condition (21) is fulfilled. Therefore, the set under supremum in relation (39) is not empty. Further, lower semicontinuity of \(\varphi \) and compactness of \(CH(t, x(\cdot ), s)\) imply that this supremum is actually attained. In particular, it follows from assumption (37) and the equality \(\beta (\tau ) = \varphi (t, x(\cdot )) + \varepsilon \) that \(\xi _0 < \tau \). So, let us choose a characteristic \((y_0(\cdot ), z_0(\cdot )) \in CH(t, x(\cdot ), s)\) from the condition

$$\begin{aligned} \varphi (\xi _0, y_0(\cdot )) - z_0(\xi _0) \le \beta (\xi _0). \end{aligned}$$
(40)

Based on property (C.4) of the upper characteristic complex \((Q, E^*)\), take \(q \in Q\) such that

$$\begin{aligned} \min _{(f, g) \in E^*(\xi _0, y_0(\cdot ), q)} (\langle s, f \rangle - g) \ge H(\xi _0, y_0(\cdot ), s) - \varepsilon / (2 (\tau - t)). \end{aligned}$$
(41)

Consider the set \(CH^*(\xi _0, y_0(\cdot ), q)\) (see Sect. 3.2 for the definition). Due to properties (C.1) to (C.3) of \((Q, E^*)\), the set \(CH^*(\xi _0, y_0(\cdot ), q)\) is compact in \(C([- h, T], \mathbb {R}^n) \times C([- h, T], \mathbb {R})\) (see, e.g., [24, Proposition 4.1]). Hence, in view of choice (41) of q and also since the Hamiltonian H is continuous by (B.1), functional (7) is non-anticipative, and \((Q, E^*)\) possesses property (C.2), there exists \(\delta \in (0, \tau - \xi _0]\) such that, for every \((y(\cdot ), z(\cdot )) \in CH^*(\xi _0, y_0(\cdot ), q)\), the inequality below is valid:

$$\begin{aligned} \langle s, \dot{y}(\xi ) \rangle - \dot{z}(\xi ) \ge H(\xi , y(\cdot ), s) - \varepsilon / (\tau - t) \text { for a.e. } \xi \in [\xi _0, \xi _0 + \delta ]. \end{aligned}$$
(42)

Recalling that \(\varphi \) satisfies condition (MC), let us choose \((y^*(\cdot ), z^*(\cdot )) \in CH^*(\xi _0, y_0(\cdot ), q)\) such that

$$\begin{aligned} \varphi (\xi _0 + \delta , y^*(\cdot )) - \varphi (\xi _0, y_0(\cdot )) \le z^*(\xi _0 + \delta ). \end{aligned}$$
(43)

Consider the function

$$\begin{aligned} z^{**}(\xi ) = {\left\{ \begin{array}{ll} z_0(\xi ) &{} \text{ if } \xi \in [0, \xi _0], \\ \displaystyle z_0(\xi _0) + \int _{\xi _0}^{\xi } \big ( \langle s, \dot{y}^*(\eta ) \rangle - H(\eta , y^*(\cdot ), s) \big ) \, \mathrm {d}\eta &{} \text{ if } \xi \in (\xi _0, T]. \end{array}\right. } \end{aligned}$$

Relying on the inclusions \((y_0(\cdot ), z_0(\cdot )) \in CH(t, x(\cdot ), s)\) and \((y^*(\cdot ), z^*(\cdot )) \in CH^*(\xi _0, y_0(\cdot ), q)\), property (C.3) of \((Q, E^*)\) and taking into account that functional (7) is non-anticipative, we obtain \((y^*(\cdot ), z^{**}(\cdot )) \in CH(t, x(\cdot ), s)\). Besides, owing to relation (42) and the equality \(z^*(\xi _0) = 0\), we have

$$\begin{aligned} z^{**}(\xi _0 + \delta )= & {} z_0(\xi _0) + \int _{\xi _0}^{\xi _0 + \delta } \big ( \langle s, \dot{y}^*(\eta ) \rangle - H(\eta , y^*(\cdot ), s) \big ) \, \mathrm {d}\eta \\&\ge z_0(\xi _0) + z^*(\xi _0 + \delta ) - \varepsilon \delta / (\tau - t), \end{aligned}$$

and, therefore, by virtue of (38), (40), and (43), we derive

$$\begin{aligned} \begin{array}{c} \varphi (\xi _0 + \delta , y^*(\cdot )) - z^{**}(\xi _0 + \delta ) \\ \le \varphi (\xi _0 + \delta , y^*(\cdot )) - z^*(\xi _0 + \delta ) - z_0(\xi _0) + \varepsilon \delta / (\tau - t) \\ \le \varphi (\xi _0, y_0(\cdot )) - z_0(\xi _0) + \varepsilon \delta / (\tau - t) \le \beta (\xi _0) + \varepsilon \delta / (\tau - t) = \beta (\xi _0 + \delta ). \end{array} \end{aligned}$$

Thus, for the number \(\xi _0 + \delta \), we get

$$\begin{aligned} \min _{(y(\cdot ), z(\cdot )) \in CH(t, x(\cdot ), s)} \big ( \varphi (\xi _0 + \delta , y(\cdot )) - z(\xi _0 + \delta ) \big ) \le \beta (\xi _0 + \delta ). \end{aligned}$$

Since \(\xi _0 < \xi _0 + \delta \le \tau \) by construction, we come to a contradiction to definition (39) of \(\xi _0\). This completes the proof of Proposition 3.

Proof of Co-invariant Smoothness of the Functional V from (27)

In this appendix, we provide a direct proof of the facts that the functional \(V: [0, T] \times C([- h, T], \mathbb {R}^n) \rightarrow \mathbb {R}\) from (27) is ci-smooth and that its ci-derivatives \(\partial _t V\) and \(\nabla V\) are given by (28). Consider the functionals

$$\begin{aligned} V_1(t, x(\cdot )) = {\left\{ \begin{array}{ll} \displaystyle \frac{\big (\Vert x(\cdot )\Vert _{[- h, t]}^2 - \Vert x(t)\Vert ^2\big )^2}{\Vert x(\cdot )\Vert _{[- h, t]}^2} &{} \text{ if } \Vert x(\cdot )\Vert _{[- h, t]} > 0, \\ 0 &{} \text{ if } \Vert x(\cdot )\Vert _{[- h, t]} = 0, \end{array}\right. } \quad V_2(t, x(\cdot )) = \Vert x(t)\Vert ^2, \end{aligned}$$
(44)

where \((t, x(\cdot )) \in [0, T] \times C([- h, T], \mathbb {R}^n)\). Observe that the representation \(V = V_1 + V_2\) holds, and, moreover, the functional \(V_2\) is ci-smooth and, for every \((t, x(\cdot )) \in [0, T) \times C([- h, T], \mathbb {R}^n)\), the equalities \(\partial _t V_2 (t, x(\cdot )) = 0\) and \(\nabla V_2(t, x(\cdot )) = 2 x(t)\) are valid (see also, e.g., [19, Sect. 1]). Thus, it remains to show that the functional \(V_1\) is ci-smooth and that its ci-derivatives are calculated as follows:

$$\begin{aligned} \partial _t V_1(t, x(\cdot )) = 0, \quad \nabla V_1(t, x(\cdot )) = {\left\{ \begin{array}{ll} \displaystyle - \frac{4 \big (\Vert x(\cdot )\Vert _{[- h, t]}^2 - \Vert x(t)\Vert ^2\big )}{\Vert x(\cdot )\Vert _{[- h, t]}^2} x(t) &{} \text{ if } \Vert x(\cdot )\Vert _{[- h, t]} > 0, \\ 0 &{} \text{ if } \Vert x(\cdot )\Vert _{[- h, t]} = 0 \end{array}\right. } \end{aligned}$$
(45)

for any \((t, x(\cdot )) \in [0, T) \times C([- h, T], \mathbb {R}^n)\).

Let us fix a point \((t, x(\cdot )) \in [0, T) \times C([- h, T], \mathbb {R}^n)\) and prove that the functional \(V_1\) is ci-differentiable at this point (see Sect. 2.2 for the definition) and that formulas (45) hold. Fix \(y(\cdot ) \in {\text {Lip}}(t, x(\cdot ))\) and take \(L > 0\) such that \(\Vert y(\tau ) - y(\xi )\Vert \le L |\tau - \xi |\) for any \(\tau \), \(\xi \in [t, T]\).

Firstly, let us suppose that \(\Vert x(t)\Vert < \Vert x(\cdot )\Vert _{[- h, t]}\). Then, there exists \(\delta \in (0, T - t]\) satisfying the condition \(L \delta \le \Vert x(\cdot )\Vert _{[- h, t]} - \Vert x(t)\Vert \). In view of (3), for every \(\tau \in [t, t + \delta ]\), we derive

$$\begin{aligned} \Vert y(\tau )\Vert \le \Vert y(\tau ) - y(t)\Vert + \Vert x(t)\Vert \le L \delta + \Vert x(t)\Vert \le \Vert x(\cdot )\Vert _{[- h, t]}, \end{aligned}$$

and, therefore, \(\Vert y(\cdot )\Vert _{[- h, \tau ]} \le \Vert x(\cdot )\Vert _{[- h, t]}\). Consequently, we get \(\Vert y(\cdot )\Vert _{[- h, \tau ]} = \Vert x(\cdot )\Vert _{[- h, t]} > 0\), \(\tau \in [t, t + \delta ]\). Thus, according to (44), we obtain

$$\begin{aligned}&V_1(\tau , y(\cdot )) - V_1(t, x(\cdot ))\\&\quad = \frac{\big (\Vert x(\cdot )\Vert _{[- h, t]}^2 - \Vert y(\tau )\Vert ^2\big )^2 - \big (\Vert x(\cdot )\Vert _{[- h, t]}^2 - \Vert x(t)\Vert ^2\big )^2}{\Vert x(\cdot )\Vert _{[- h, t]}^2}, \quad \tau \in [t, t + \delta ]. \end{aligned}$$

Let us fix \(\tau \in [t, t + \delta ]\) and estimate the numerator of the obtained expression. Based on the difference of squares formula and the equality \(\Vert y(\tau )\Vert ^2 = \Vert x(t)\Vert ^2 + 2 \langle x(t), y(\tau ) - x(t) \rangle + \Vert y(\tau ) - x(t)\Vert ^2\), we derive

$$\begin{aligned} \begin{array}{c} \big (\Vert x(\cdot )\Vert _{[- h, t]}^2 - \Vert y(\tau )\Vert ^2\big )^2 - \big (\Vert x(\cdot )\Vert _{[- h, t]}^2 - \Vert x(t)\Vert ^2\big )^2 \\ = - \Vert y(\tau ) - x(t)\Vert ^2 \big (2 \Vert x(\cdot )\Vert _{[- h, t]}^2 -\Vert y(\tau )\Vert ^2 - \Vert x(t)\Vert ^2\big )\\ + 2 \langle x(t), y(\tau ) - x(t) \rangle \big (\Vert y(\tau )\Vert ^2 - \Vert x(t)\Vert ^2 \big ) \\ - 4 \langle x(t), y(\tau ) - x(t) \rangle \big (\Vert x(\cdot )\Vert _{[- h, t]}^2 - \Vert x(t)\Vert ^2 \big ) = A_1 + A_2 + A_3. \end{array} \end{aligned}$$

Since \(\Vert y(\tau )\Vert \le \Vert x(\cdot )\Vert _{[- h, t]}\), for the first two terms \(A_1\) and \(A_2\), we have

$$\begin{aligned} |A_1| = \Vert y(\tau ) - x(t)\Vert ^2 \big (2 \Vert x(\cdot )\Vert _{[- h, t]}^2 - \Vert y(\tau )\Vert ^2 - \Vert x(t)\Vert ^2\big ) \le 2 L^2 (\tau - t)^2 \Vert x(\cdot )\Vert _{[- h, t]}^2 \end{aligned}$$

and

$$\begin{aligned}&|A_2| \le 2 \Vert x(t)\Vert \Vert y(\tau ) - x(t)\Vert ^2 \big (\Vert y(\tau )\Vert + \Vert x(t)\Vert \big ) \\&\quad \le 4 \Vert x(\cdot )\Vert _{[- h, t]}^2 \Vert y(\tau ) - x(t)\Vert ^2 \le 4 L^2 (\tau - t)^2 \Vert x(\cdot )\Vert _{[- h, t]}^2. \end{aligned}$$

Thus, we get

$$\begin{aligned} \begin{array}{c} \displaystyle \bigg | V_1(\tau , y(\cdot )) - V_1(t, x(\cdot )) + \frac{4 \big (\Vert x(\cdot )\Vert _{[- h, t]}^2 - \Vert x(t)\Vert ^2 \big )}{\Vert x(\cdot )\Vert _{[- h, t]}^2} \langle x(t), y(\tau ) - x(t) \rangle \bigg | \\ \displaystyle = \bigg | V_1(\tau , y(\cdot )) - V_1(t, x(\cdot )) - \frac{A_3}{\Vert x(\cdot )\Vert _{[- h, t]}^2} \bigg | \\ = \dfrac{|A_1 + A_2|}{\Vert x(\cdot )\Vert _{[- h, t]}^2} \le 6 L^2 (\tau - t)^2, \quad \tau \in [t, t + \delta ]. \end{array} \end{aligned}$$

Hence, in the considered case, the functional \(V_1\) is ci-differentiable at \((t, x(\cdot ))\) and formulas (45) hold.

Now, suppose that \(\Vert x(t)\Vert = \Vert x(\cdot )\Vert _{[- h, t]}\). Then, \(V_1(t, x(\cdot )) = 0\) according to (44). Let us show that, in this case, for every \(\tau \in [t, T]\), the inequality below is valid:

$$\begin{aligned} V_1(\tau , y(\cdot )) \le 4 L^2 (\tau - t)^2. \end{aligned}$$
(46)

If \(\Vert y(\cdot )\Vert _{[- h, \tau ]} = 0\), then \(V_1(\tau , y(\cdot )) = 0\), and inequality (46) is fulfilled. Therefore, we can assume further that \(\Vert y(\cdot )\Vert _{[-h, \tau ]} > 0\) and, consequently,

$$\begin{aligned} V_1(\tau , y(\cdot )) = \frac{\big (\Vert y(\cdot )\Vert _{[- h, \tau ]}^2 - \Vert y(\tau )\Vert ^2\big )^2}{\Vert y(\cdot )\Vert _{[- h, \tau ]}^2}. \end{aligned}$$
(47)

In view of the relations (see also (3))

$$\begin{aligned}&\Vert y(\cdot )\Vert _{[- h, \tau ]} = \max \big \{ \Vert x(\cdot )\Vert _{[- h, t]}, \max _{\xi \in [t, \tau ]} \Vert y(\xi )\Vert \big \}\\&\quad = \max \big \{ \Vert x(t)\Vert , \max _{\xi \in [t, \tau ]} \Vert y(\xi )\Vert \big \} = \max _{\xi \in [t, \tau ]} \Vert y(\xi )\Vert , \end{aligned}$$

there exists \(\xi ^{(\tau )} \in [t, \tau ]\) such that \(\Vert y(\cdot )\Vert _{[- h, \tau ]} = \Vert y(\xi ^{(\tau )})\Vert \). So, we get

$$\begin{aligned} 0 \le \Vert y(\cdot )\Vert _{[- h, \tau ]} - \Vert y(\tau )\Vert \le \Vert y(\xi ^{(\tau )}) - y(\tau )\Vert \le L |\xi ^{(\tau )} - \tau | \le L (\tau - t), \end{aligned}$$

which yields

$$\begin{aligned}&\big (\Vert y(\cdot )\Vert _{[- h, \tau ]}^2 - \Vert y(\tau )\Vert ^2\big )^2 \\&\quad = \big (\Vert y(\cdot )\Vert _{[- h, \tau ]} - \Vert y(\tau )\Vert \big )^2 \big (\Vert y(\cdot )\Vert _{[- h, \tau ]} + \Vert y(\tau )\Vert \big )^2 \le 4 L^2 (\tau - t)^2 \Vert y(\cdot )\Vert _{[- h, \tau ]}^2. \end{aligned}$$

In accordance with (47), the obtained estimate proves the desired inequality (46). Based on this inequality, we derive \(|V_1(\tau , y(\cdot )) - V_1(t, x(\cdot ))| = V_1(\tau , y(\cdot )) \le 4 L^2 (\tau - t)^2\) for every \(\tau \in [t, T]\), and, thus, the functional \(V_1\) is ci-differentiable at \((t, x(\cdot ))\) and formulas (45) hold in the second case as well.

Finally, let us turn to the question about continuity of \(V_1\) and \(\nabla V_1\). Observe that, if follows directly from definition (2) of the metric \({\text {dist}}\) that the mappings \([0, T] \times C([- h, T], \mathbb {R}^n) \ni (t, x(\cdot )) \mapsto \Vert x(\cdot )\Vert _{[- h, t]} \in \mathbb {R}\) and \([0, T] \times C([- h, T], \mathbb {R}^n) \ni (t, x(\cdot )) \mapsto x(t) \in \mathbb {R}^n\) are continuous. This implies continuity of \(V_1\) and \(\nabla V_1\) at each point \((t, x(\cdot ))\) such that \(\Vert x(\cdot )\Vert _{[- h, t]} > 0\). Further, for any \((t, x(\cdot )) \in [0, T] \times C([- h, T], \mathbb {R}^n)\), we have \(0 \le \Vert x(\cdot )\Vert _{[- h, t]}^2 - \Vert x(t)\Vert ^2 \le \Vert x(\cdot )\Vert _{[- h, t]}^2\), which gives \(V_1(t, x(\cdot )) \le \Vert x(\cdot )\Vert _{[- h, t]}^2\) and \(\Vert \nabla V_1(t, x(\cdot ))\Vert \le 4 \Vert x(t)\Vert \). These estimates provide continuity of \(V_1\) and \(\nabla V_1\) at the remaining points \((t, x(\cdot ))\), when \(\Vert x(\cdot )\Vert _{[- h, t]} = 0\). The proof is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomoyunov, M.I., Lukoyanov, N.Y. & Plaksin, A.R. Path-Dependent Hamilton–Jacobi Equations: The Minimax Solutions Revised. Appl Math Optim 84 (Suppl 1), 1087–1117 (2021). https://doi.org/10.1007/s00245-021-09794-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09794-4

Keywords

Navigation