Skip to main content
Log in

Existence and Non-existence of Global Solutions for a Nonlocal Choquard–Kirchhoff Diffusion Equations in \(\mathbb {R}^{N}\)

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, we investigate the local existence, global existence, and blow-up of solutions to the Cauchy problem for Choquard–Kirchhoff-type equations involving the fractional p-Laplacian. As a particular case, we study the following initial value problem

$$\begin{aligned}\left\{ \begin{array}{llc} u_{t}+M\left( \Vert u\Vert ^{p}\right) [(-\Delta )^{s}_{p}u+V(x)|u|^{p-2}u]=\left( \int _{\mathbb {R}^{N}}\frac{|u|^{q}}{|x-y|^{\mu }}\,dy\right) |u|^{q-2} u&{} \text {in}\ &{}\mathbb {R}^{N}\times (0, +\infty ), \\ u(x,0)=u_{0}(x), &{} \text {in} &{}\mathbb {R}^{N} , \end{array}\right. \end{aligned}$$

where

$$\begin{aligned} \Vert u\Vert =\left( [u]^{p}_{s,p}+\int _{\mathbb {R}^{N}}V(x)|u|^{p}\,dx\right) ^{1/p}, \end{aligned}$$

\(s\in (0,1)\), \(N>ps\), \(p,q> 2\), \((-\Delta )^{s}_{p}\) is the fractional p-Laplacian, \(u_{0} :\mathbb {R}^{N}\rightarrow [0, +\infty )\) is the initial function, \(M :\mathbb {R}^{+}\rightarrow \mathbb {R}^{+}\) is a continuous function given by \(M(\sigma )=\sigma ^{\theta -1}\), \(\theta \in [1, N/(N-sp))\) and \(V :\mathbb {R}^{N}\rightarrow \mathbb {R}^{+}\) is the potential function. Under some appropriate conditions, the well-posedness of nonnegative solutions for the above Cauchy problem is established by employing the Galerkin method. Moreover, the asymptotic behavior of global solutions is investigated under some assumptions on the initial data. We also establish upper and lower bounds for the blow-up time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli, L.: Nonlocal equations, drifts and games. Nonlinear Partial Differ. Equ. Abel Symp. 7, 37–52 (2012)

    Article  Google Scholar 

  2. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul 7, 1005–1028 (2008)

    Article  MathSciNet  Google Scholar 

  3. Applebaum, D.: Lévy processes from probability to finance and quantum groups. Notices Am. Math. Soc. 51, 1336–1347 (2004)

    MATH  Google Scholar 

  4. Vázquez, J.L. : The evolution fractional p-Laplacian equation in \(\mathbb{R}^{N}\). Fundamental solution and asymptotic behaviour. Nonlinear Anal. 199, 112034. arXiv: 2004.05799

  5. Mingqi, X., Rădulescu, D.V., Zhang, B.L.: Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity 31, 3228–3250 (2018)

    Article  MathSciNet  Google Scholar 

  6. Vázquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discret. Contin. Dyn. Syst. Ser. S 7, 857–885 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  8. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  9. Penrose, R.: On gravity’s role in quantum state reduction. Genet. Relativ. Gravit. 28(5), 581–600 (1996)

    Article  MathSciNet  Google Scholar 

  10. Alves, C.O., Figueiredo, G.M., Yang, M.: Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field. Asymptot. Anal. 96(2), 135–159 (2016)

    Article  MathSciNet  Google Scholar 

  11. Alves, C.O., Yang, M.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257(11), 4133–4164 (2014)

    Article  MathSciNet  Google Scholar 

  12. Liang, S., Pucci, P., Zhang, B.: Multiple solutions for critical Choquard–Kirchhoff type equations. Adv. Nonlinear Anal. 10(1), 400–419 (2021)

    Article  MathSciNet  Google Scholar 

  13. Pucci, P., Xiang, M., Zhang, B.: Existence results for Schrdinger–Choquard–Kirchhoff equations involving the fractional \(p\)-Laplacian. Adv. Calc. Var. 12(3), 253–275 (2019)

    Article  MathSciNet  Google Scholar 

  14. Gobbino, M.: Quasilinear degenerate parabolic equations of Kirchhoff type. Math. Methods Appl. Sci. 22(5), 375–388 (1999)

    Article  MathSciNet  Google Scholar 

  15. Ghisi, M., Gobbino, M.: Kirchhoff equations from quasi-analytic to spectral-gap data. Bull. Lond. Math. Soc. 43(2), 374–385 (2011)

    Article  MathSciNet  Google Scholar 

  16. Ghisi, M., Gobbino, M.: Spectral gap global solutions for degenerate Kirchhoff equations. Nonlinear Anal. 71(9), 4115–4124 (2009)

    Article  MathSciNet  Google Scholar 

  17. Ghisi, M., Gobbino, M.: Kirchhoff equations with strong damping. J. Evol. Equ. 16, 441–482 (2016)

    Article  MathSciNet  Google Scholar 

  18. Bisci, G.M., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Equations. Encyclopedia of Mathematics and its Applications , vol. 162. Cambridge University Press, Cambridge (2016)

  19. Papadopulos, P.G., Stavrakakis, N.M.: Global existence and blow-up results for an equations of Kirchhoff type on \(\mathbb{R}^{N}\). Top. Methods Nonlinear Anal. 17, 91–109 (2001)

    Article  Google Scholar 

  20. D’Ancona, P., Shibata, Y.: On global solvability for the degenerate Kirchhoff equation in the analytic category. Math. Methods Appl. Sci. 17, 477–489 (1994)

    Article  MathSciNet  Google Scholar 

  21. D’Ancona, P., Spagnolo, S.: Nonlinear perturbations of the Kirchhoff equation. Commun. Pure Appl. Math. 47, 1005–1029 (1994)

    Article  MathSciNet  Google Scholar 

  22. Gobbino, M.: Quasilinear degenerate parabolic equations of Kirchhoff type. Math. Meth. Appl. Sci. 22, 375–388 (1999)

    Article  MathSciNet  Google Scholar 

  23. Han, Y., Gao, W., Sun, Z., Li, H.: Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy. Comput. Math. Appl. 76(10), 2477–2483 (2018)

    Article  MathSciNet  Google Scholar 

  24. Han, Y., Li, Q.: Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy. Comput. Math. Appl. 75(9), 3283–3297 (2018)

    Article  MathSciNet  Google Scholar 

  25. Alves, C.O., Boudjeriou, T.: Existence of solution for a class of nonvariational Kirchhoff type problem via dynamical methots. Nonlinear Anal. 197, 1–17 (2020)

    Article  Google Scholar 

  26. Pan, N., Pucci, P., Xu, R., Zhang, B.: Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms. J. Evol. Equ. 19(3), 615–643 (2019)

    Article  MathSciNet  Google Scholar 

  27. Pan, N., Pucci, P., Zhang, B.: Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian. J. Evol. Equ. 18(2), 385–409 (2018)

    Article  MathSciNet  Google Scholar 

  28. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonliear Anal. 94, 156–170 (2014)

    Article  MathSciNet  Google Scholar 

  29. Ding, H., Zhou, J.: Local existence, global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem. Nonlinearity 33(1046) (2020)

  30. Pucci, P., Xiang, M., Zhang, B.: A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discret. Contin. Dyn. Syst. 37, 4035–4051 (2017)

    Article  MathSciNet  Google Scholar 

  31. Fu, Y., Pucci, P.: On solutions of space-fractional diffusion equations by means of potential wells. Electron. J. Qual. Theory Differ. Equ. Paper No. 70 (2016)

  32. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 519–527 (2012)

    Article  MathSciNet  Google Scholar 

  33. Showalter, E.R.: Monotone operators in Banach spaces and nonlinear partial differential equations. In: Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence

  34. Sattinger, D.H.: On global solution of nonlinear hyperbolic equations. Arch. Ration. Mech. Math. 30, 148–172 (1968)

    Article  MathSciNet  Google Scholar 

  35. Boudjeriou, T.: Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity. Mediterr. J. Math. 17, 162 (2020). https://doi.org/10.1007/s00009-020-01584-6

    Article  MathSciNet  MATH  Google Scholar 

  36. Alves, C.O., Boudjeriou, T.: Existence of solution for a class of heat equation in whole \(\mathbb{R}^{N}\). Discret. Contin. Dyn. Syst. https://doi.org/10.3934/dcds.2021031

  37. Lieb, E., Loss, M.: Analysis, 2nd ed., Grad. Stud. Math. 14, American Mathematical Society, Providence (2001)

  38. Bogachev, V.I.: Measure Theory II, vol. I. Springer, Berlin (2007)

    Book  Google Scholar 

  39. Simon, J.: Compact sets in the space \(L^{p}(0,T, B)\). Ann. Math. Pura. Appl. (4) 146, 65–96 (1987)

    Article  Google Scholar 

  40. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, Basel (1991)

    MATH  Google Scholar 

  41. Zheng, S.: Nonlinear Evolution Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 133. Chapman & Hall/CRC, Boca Raton, FL (2004)

    Google Scholar 

  42. Martinez, P.: A new method to obtain decay rate estimates for dissipative systems. ESAIM Control Optim. Calc. Var. 4, 419–444 (1999)

    Article  MathSciNet  Google Scholar 

  43. Brezis, H., Mironescu, P.: Gagliardo-Nirenberg inequalities and non-inequalities: the full story. Ann. l’Inst. Henri Poincare (C) Anal Non Lineaire 35(5), 1355–1376 (2018)

    Article  MathSciNet  Google Scholar 

  44. Han, Y., Gao, W., Sun, Z., Li, H.: Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy. Comput. Math. Appl. 76(10), 2477–2483 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author warmly thank the anonymous referee for his/her useful and nice comments that were very important to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Boudjeriou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudjeriou, T. Existence and Non-existence of Global Solutions for a Nonlocal Choquard–Kirchhoff Diffusion Equations in \(\mathbb {R}^{N}\) . Appl Math Optim 84 (Suppl 1), 695–732 (2021). https://doi.org/10.1007/s00245-021-09783-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09783-7

Keywords

Mathematics Subject Classification

Navigation