Skip to main content
Log in

BV Solutions of a Convex Sweeping Process with Local Conditions in the Sense of Differential Measures

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

A convex sweeping process is considered in a separable Hilbert space. The majority of works on sweeping processes use the Hausdorff distance to describe the movement of the convex set generating the process. However, for unbounded sets the use of the Hausdorff distance does not always guarantee the fulfilment of conditions under which a solution exists. In the present work, instead of the Hausdorff distance we use the \(\rho \)-excesses of sets. These excesses are subjected to positive Radon measures depending on \(\rho \). We prove the existence of right continuous BV solutions and establish their dependence on single-valued perturbations depending only on time. The results we obtain are applied to prove the theorems on existence and relaxation of extremal right continuous BV solutions of a sweeping process with multivalued perturbations. Some results on absolutely continuous solutions are derived as corollaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgin, R.D.: Geometric Aspects of Convex Sets with the Radon-Nikodym Property. Lecture Notes in Math., vol. 993. Springer, Berlin (1983)

  2. Edmond, J.F., Thibault, L.: BV solutions of nonconvex sweeping process differential inclusion with perturbation. J. Differ. Equ. 226, 135–179 (2006)

    Article  MathSciNet  Google Scholar 

  3. Thibault, L.: Moreau sweeping process with bounded truncated retraction. J. Convex Anal. 23(4), 1051–1098 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26, 347–374 (1997)

    Article  MathSciNet  Google Scholar 

  5. Tolstonogov, A.A.: Sweeping process with unbounded nonconvex perturbation. Nonlinear Anal. 108, 291–301 (2014)

    Article  MathSciNet  Google Scholar 

  6. Tolstonogov, A.A.: Polyhedral sweeping processes with unbounded nonconvex-valued perturbation. J. Differ. Equ. 263, 7965–7983 (2017)

    Article  MathSciNet  Google Scholar 

  7. Tolstonogov, A.A.: Local existence conditions for sweeping process solutions. Sbornik: Mathematics 210(9), 1305–1325 (2018)

  8. Le, B.K.: Existence of solutions for sweeping process with local conditions. J. Convex Anal. 27(3) (2020) (in press)

  9. Nacry, Florent: Perturbed BV sweeping process involving prox-regular sets. J. Nonlinear Convex Anal. 18(7), 1619–1651 (2017)

    MathSciNet  Google Scholar 

  10. Adly, Samir, Haddad, Tahar, Thibault, Lionel: Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities. Math. Progr. Ser. B 148(5), 5–47 (2014)

    Article  MathSciNet  Google Scholar 

  11. Tolstonogov, A.A.: Compactness of BV solutions of a convex sweeping process of measurable differential inclusions. J. Convex Anal. 27(2), 673–695 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Timoshin, S.A., Tolstonogov, A.A.: Existence and relaxation of BV solutions for a sweeping process with a nonconvex-valued perturbation. J. Convex Anal. 27(2), 645–672 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Nacry, Florent, Thibault, Lionel: BV prox-regular sweeping process with bounded truncated variation. Optimization 69(7–8), 1391–1437 (2020)

    Article  MathSciNet  Google Scholar 

  14. Tolstonogov, A.A.: Properties of the set of admissible “state-control” pairs for first-order evolution control systems. Izv. Math. 65(3), 617–640 (2001)

    Article  MathSciNet  Google Scholar 

  15. Tolstonogov, A.A.: Properties of the set of extreme solutions for a class of nonlinear second order evolution inclusions. Set-Valued Anal. 10(1), 53–77 (2002)

    Article  MathSciNet  Google Scholar 

  16. Tolstonogov, A.A.: Properties of attainable sets of evolution inclusions and control systems of subdifferential type. Siberian Math. J. 45(4), 763–784 (2004)

    Article  MathSciNet  Google Scholar 

  17. Tolstonogov, A.A.: Properties of the set of “trajectory-control” pairs of a control system with subdifferential operators. J. Math. Sci. 162(3), 407–442 (2009)

    Article  MathSciNet  Google Scholar 

  18. Krejci, P., Tolstonogov, A.A., Timoshin, S.A.: A control problem in phase transition modeling. NODEA 22(4), 513–542 (2015)

    Article  MathSciNet  Google Scholar 

  19. Dinculeanu, N.: Vector Measures. Veb Deutscher Verlag der Wissenschaften, Berlin (1966)

    MATH  Google Scholar 

  20. Alexiewicz, A.: Linear functionals on Denjoy-integrable functions. Colloquium Math. 1, 289–293 (1948)

    Article  MathSciNet  Google Scholar 

  21. Himmelberg, C.J.: Measurable relations. Fundamenta Math. 87, 53–72 (1975)

    Article  MathSciNet  Google Scholar 

  22. Hiai, F., Umegaki, H.: Integrals, conditional expectations, and martingales of multivalued functions. J. Multivar. Anal. 7, 149–182 (1977)

    Article  MathSciNet  Google Scholar 

  23. Tolstonogov, A.A.: Relaxation in nonconvex optimal control problems containing the difference of two subdifferetials. SIAM J. Control Optim. 54(1), 175–197 (2016)

    Article  MathSciNet  Google Scholar 

  24. Castaing, Ch., Valadier, M.: Convex analysis and measurable multifunctions, Lecture Notes in Math., vol. 580. Springer, Berlin (1977)

  25. Tolstonogov, A.A.: Strongly exposed points of decomposable sets in spaces of Bochner integrable functions. Math. Notes 71(2), 267–275 (2002)

    Article  MathSciNet  Google Scholar 

  26. Tolstonogov, A.A.: Existence and relaxation theorems for extreme continuous selectors of multifunctions with decomposable values. Topol. Appl. 155(8), 898–905 (2008)

    Article  MathSciNet  Google Scholar 

  27. Kunze, M., Marques, M.D.P.M.: BV solutions to evolution problems with time dependent domains. Set-Valued Anal. 5, 57–72 (1994)

  28. Diestel, J., Uhl J.J. Jr. Vector Measures. Amer. Math. Soc. (1977)

  29. Tolstonogov, A.A., Tolstonogov, D.A.: \(L_p\)-continuous extreme selectors of multifunctions with decomposable values: existence theorems Set-Valued Anal. 4(2) , 173–203 (1996)

  30. Tolstonogov, A.A.: Scorza-Dragoni’s theorem for multi-valued mappings with variable domain of definition. Math. Notes 48(5), 1151–1158 (1990)

    Article  MathSciNet  Google Scholar 

  31. Kuratowski, K.: Topology. V. 1. M.: Mir (1966)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tolstonogov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by RFBR Grant No. 18-01-00026.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolstonogov, A.A. BV Solutions of a Convex Sweeping Process with Local Conditions in the Sense of Differential Measures. Appl Math Optim 84 (Suppl 1), 591–629 (2021). https://doi.org/10.1007/s00245-021-09780-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09780-w

Keywords

Navigation