Skip to main content
Log in

Distributed Optimal Control of the 2D Cahn–Hilliard–Oberbeck–Boussinesq System for Nonisothermal Viscous Two-Phase Flows

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We analyze a distributed optimal control problem where the state equation is governed by the coupling of the two-dimensional Cahn–Hilliard and Oberbeck–Boussinesq systems modelling incompressible viscous two-phase flows with convective heat transfer. Pointwise constraints are imposed on the controls that act as external sources in the fluid and convection–diffusion equations. The objective functional is of tracking-type that consists of a weighted energy of the difference between the state and a desired target. We establish the existence of optimal controls, the differentiability of the control-to-state operator, and the necessary and sufficient optimality conditions. For initial and target data with finite energy norms, limited space–time regularity of the adjoint states arises due to convection and surface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comp. Fluid Dyn. 21, 337–344 (1984)

    MATH  Google Scholar 

  2. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Alessia, B., Bochicchio, I., Fabrizio, M.: Phase separation in quasi-incompressible fluids: Cahn-Hilliard model in the Cattaneo-Maxwell framework. Z. Angew. Math. Phys. 66, 135–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: A phase-field model of solidification with convection. Physica D 135, 175–194 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems, 2nd edn. Birhäuser, Berlin (2007)

    Book  MATH  Google Scholar 

  6. Boldrini, J.L., Fernandéz-Cara, E., Rojas-Medar, M.A.: Analysis of optimal control problems for the 2-D stationary Boussinesq equations. Rev. Mat. Complete. 20, 339–366 (2007)

    MATH  Google Scholar 

  7. Boussinesq, J.: Théorie analytique de la chaleur: Mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, vol. 2. Gauthier-Villars, Paris (1903)

    MATH  Google Scholar 

  8. Boyer, F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20, 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Caginalp, G.: An analysis of a phase-field model of a free boundary. Arch. Ration. Mech. Anal. 92, 205–245 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caginalp, G.: The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic limits. IMA J. Appl. Math. 44, 77–94 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cahn, J.W.: On spinodal decomposition. Acta Metall. Matter. 9, 795–801 (1961)

    Article  Google Scholar 

  12. Cahn, J.W., Hilliard, J.E.: Free energy in nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  MATH  Google Scholar 

  13. Casas, E., Chrysafinos, K.: A discontinuous Galerkin time-stepping scheme for the velocity problem. SIAM J. Numer. Anal. 50, 2281–2306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations. SIAM J. Control Optim. 46, 952–982 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chella, R., Viñals, J.: Mixing of two-phase fluids by a cavity flow. Phys. Rev. E 53, 3832–3840 (1996)

    Article  Google Scholar 

  16. Chupin, L.: Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. DCDS-Ser. B 3, 45–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Colli, P., Gilardi, G., Marinoschi, G., Rocca, E.: Optimal control for a conserved phase field system with a possibly singular potential. Evol. Equ. Control. Theory 7, 95–116 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the viscous Cahn-Hilliard equation with dynamic boundary conditions. Appl. Math. Optim. 73, 195–225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Colli, P., Sprekels, J.: A boundary control problem for the pure Cahn-Hilliard equation with dynamic boundary conditions. Adv. Nonlinear Anal. 4, 311–325 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Colli, P., Sprekels, J.: Optimal control of an Allen-Cahn equation with singular potentials and dynamic boundary condition. SIAM J. Control Optim. 7, 95–116 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Doi, M.: Dynamics of domains and textures. In: Theoretical Challenges in the Dynamics of Complex Fluids, pp. 293–314, (1997)

  22. Dunford, N., Schwartz, J.Y.: Linear Operators, vol. I. General Theory. Intersci. Publ, New York (1958)

    MATH  Google Scholar 

  23. Frigeri, S., Grasselli, M., Sprekels, J.: Optimal distributed control of two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with degenerate mobility and singular potential. Appl. Math. Optim. 81, 899–931 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frigeri, S., Rocca, E., Sprekels, J.: Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in 2D. SIAM J. Control Optim. 54, 221–250 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gilardi, G., Sprekels, J.: Asymptotic limits and optimal control for the Cahn-Hilliard system with convection and dynamic boundary conditions. Nonlinear Anal. 178, 1–31 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  27. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6, 8–15 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hintermüller, M., Wegner, D.: Distributed optimal control of the Cahn-Hilliard system including the case of a double-obstacle homogeneous free energy density. SIAM J. Control Optim. 50, 388–418 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hintermüller, M., Wegner, D.: Optimal control of a semi-discrete Cahn-Hilliard-Navier-Stokes system. SIAM J. Control Optim. 52, 747–772 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hintermüller, M., Wegner, D.: Distributed and boundary control problems for the semidiscrete Cahn-Hilliard/Navier-Stokes system with nonsmooth Ginzburg-Landau energies. Topol. Optim. Optim. Transp. Radon Ser. Comput. Appl. Math. 17, 40–63 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40, 925–946 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hinze, M., Matthes, U.: Optimal and model predictive control of the Boussinesq approximation. In: Kunisch, K., Sprekels, J., Leugering, G., Tröltzsch, F. (eds.) Control of Coupled Partial Differential Equations. International Series of Numerical Mathematics, vol. 155, pp. 149–174. Birkhäuser, Basel (2017)

    Chapter  Google Scholar 

  33. Hohenberg, P.C., Halperin, B.I.: Theory of dynamical critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  Google Scholar 

  34. Ito, K., Ravindran, S.S.: Optimal control of thermally convected fluid flows. SIAM J. Sci. Comput. 19, 1847–1869 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Joseph, D.D.: Stability of Fluid Motions II. Springer Tracts in Natural Philosophy. Springer, New York (1976)

    Book  MATH  Google Scholar 

  36. Kagei, Y.: Attractors for two-dimensional equations of thermal convection in the presence of the dissipation function. Hiroshima Math. J. 25, 251–311 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kellog, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21, 397–431 (1976)

    Article  MathSciNet  Google Scholar 

  38. Kenmochi, N.: Systems of nonlinear PDEs arising from dynamical phase transitions. In: Visintin, A. (ed.) Phase Transitions and Hysteresis. Lecture Notes in Mathematics, vol. 1584, pp. 39–86. Birkhäuser, Berlin (1994)

    Chapter  Google Scholar 

  39. Kenmochi, N., Niezgòdka, M.: Non-linear system for non-isothermal diffusive phase separation. J. Math. Anal. Appl. 188, 651–679 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lee, H.-C., Shin, B.C.: Piecewise optimal distributed controls for 2D Boussinesq equations. Math. Methods Appl. Sci. 23, 227–254 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lefter, C., Sprekels, J.: Optimal boundary control of a phase field system modeling nonisothermal phase transitions. Adv. Math. Sci. Appl. 17, 181–194 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)

    Book  MATH  Google Scholar 

  43. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  44. Ma, C., Gu, W., Sun, J.: Global well-posedness for the 2D Cahn-Hilliard-Boussinesq and a related system on bounded domains. Bound. Value Probl. 2017, 1–12 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Oberbeck, A.: Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. 243, 271–292 (1879)

    Article  MATH  Google Scholar 

  46. Oleinik, O.A.: A method of solution of the general Stefan problem. Sov. Math. Dokl. 1, 1350–1354 (1960)

    MathSciNet  MATH  Google Scholar 

  47. Onuki, A.: Phase transitions of fluid in shear flows. J. Phys. Condens. Matter 9, 6119–6157 (1997)

    Article  Google Scholar 

  48. Rajagopal, K.R., Røužička, M., Srinivasa, A.R.: On the Oberbeck-Boussinesq approximation. Math. Models Methods Appl. Sci. 6, 1157–1167 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Roubíc̆ek, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  50. Rubinstein, L.I.: The Stefan Problem, vol. 27. American Mathematical Society, Providence (1986)

    Google Scholar 

  51. Simon, J.: Compact sets in \(L^p(0, T;B)\). Ann. Mat. Pur. Appl. 146, 65–96 (1987)

    Article  MATH  Google Scholar 

  52. Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Berlin (2001)

    Book  MATH  Google Scholar 

  53. Sprekels, J., Zheng, S.: Optimal control problems for a thermodynamically consistent model of phase-field type for phase transitions. Adv. Math. Sci. Appl. 1, 113–125 (1992)

    MathSciNet  MATH  Google Scholar 

  54. Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001)

    MATH  Google Scholar 

  55. Temam, R., Miranville, A.: Mathematical Modeling in Continuum Mechanics, 2nd edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  56. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  57. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  58. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  59. Wachsmuth, D.: Optimal Control of the Unsteady Navier-Stokes Equations. PhD thesis, Technischen Universität Berlin (2006)

  60. Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. I. Springer, New York (1986)

    Book  MATH  Google Scholar 

  61. Zhao, K.: Global regularity for a coupled Cahn-Hilliard-Boussinesq system on bounded domains. Q. Appl. Math. 69, 331–356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhao, X.P., Liu, C.C.: Optimal control problem for viscous Cahn-Hilliard equation. Nonlinear Anal. 74, 6348–6357 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhao, X.P., Liu, C.C.: Optimal control of the convective Cahn-Hilliard equation. Appl. Anal. 92, 1028–1045 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhao, X.P., Liu, C.C.: Optimal control for the convective Cahn-Hilliard equation in 2D case. Appl. Math. Optim. 70, 61–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhou, Y., Fan, J.: Blow-up criteria of smooth solutions for the Cahn-Hilliard-Boussinesq system with zero viscosity in a bounded domain. Abstr. Appl. Anal. 802876 (2012)

Download references

Acknowledgements

The author would like to thank the anonymous referees for the helpful comments and suggestions that lead to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Peralta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the One U.P. Faculty Grant 2019-101374.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peralta, G. Distributed Optimal Control of the 2D Cahn–Hilliard–Oberbeck–Boussinesq System for Nonisothermal Viscous Two-Phase Flows. Appl Math Optim 84 (Suppl 2), 1219–1279 (2021). https://doi.org/10.1007/s00245-021-09759-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09759-7

Keywords

Mathematics Subject Classification

Navigation