Skip to main content
Log in

Minimizing the Probability of Absolute Ruin Under Ambiguity Aversion

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, we consider an optimal robust reinsurance problem in a diffusion model for an ambiguity-averse insurer, who worries about ambiguity and aims to minimize the robust value involving the probability of absolute ruin and a penalization of model ambiguity. It is assumed that the insurer is allowed to purchase per-claim reinsurance to transfer its risk exposure, and that the reinsurance premium is computed according to the mean-variance premium principle which is a combination of the expected-value and variance premium principles. The optimal reinsurance strategy and the associated value function are derived explicitly by applying stochastic dynamic programming and by solving the corresponding boundary-value problem. We prove that there exists a unique point of inflection which relies on the penalty parameter greatly such that the robust value function is strictly concave up to the unique point of inflection and is strictly convex afterwards. It is also interesting to observe that the expression of the optimal robust reinsurance strategy is independent of the penalty parameter and coincides with the one in the benchmark case without ambiguity. Finally, some numerical examples are presented to illustrate the effect of ambiguity aversion on our optimal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. By locally equivalent, we mean the measures are equivalent on \(\mathcal {F}_t\) for all \(t\ge 0\). Note that the stochastic integral can still be defined and has all the usual properties even though the filtrations in our setup are not complete. See, for example, Chapter 1 in Jacod and Shiryaev [27] and Sect. 2 in Bayraktar and Zhang [8].

  2. The existence of such a measure is not guaranteed if the filtration has been completed with respect to \(\mathbb {P}\).

  3. Note that (41) is a sufficient and necessary condition in Cauchy criterion to ensure the improper integral \(\int _{-\infty }^{u_1}f_2(C_1,z)dz \) is uniformly convergent. See, for example, Chapter 17.2.1 in Zorich [34].

References

  1. Schmidli, H.: On minimizing the ruin probability by investment and reinsurance. Ann. Appl. Probab. 12(3), 890–907 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bai, L., Guo, J.: Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint. Insur. Math. Econ. 42(3), 968–975 (2008)

    Article  MathSciNet  Google Scholar 

  3. Liang, X., Young, V.R.: Minimizing the probability of ruin: optimal per-loss reinsurance. Insur. Math. Econ. 82, 181–190 (2018)

    Article  MathSciNet  Google Scholar 

  4. Liu, Y., Ma, J.: Optimal reinsurance/investment problems for general insurance models. Ann. Appl. Probab. 19(4), 1495–1528 (2009)

    Article  MathSciNet  Google Scholar 

  5. Liang, Z., Bayraktar, E.: Optimal reinsurance and investment with unobservable claim size and intensity. Insur. Math. Econ. 55(1), 156–66 (2014)

    Article  MathSciNet  Google Scholar 

  6. Liang, Z., Yuen, K.C.: Optimal dynamic reinsurance with dependence risks: variance premium principle. Scand. Actuar. J. 2016(1), 18–36 (2016)

    Article  Google Scholar 

  7. Maenhout, P.J.: Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium. J. Econ. Theory 128(1), 136–163 (2006)

    Article  MathSciNet  Google Scholar 

  8. Bayraktar, E., Zhang, Y.: Minimizing the probability of lifetime ruin under ambiguity aversion. SIAM J. Control Optim. 53(1), 58–90 (2015)

    Article  MathSciNet  Google Scholar 

  9. Yi, B., Li, Z., Viens, F.G., Zeng, Y.: Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model. Insur. Math. Econ. 53(3), 601–614 (2013)

    Article  MathSciNet  Google Scholar 

  10. Zeng, Y., Li, D., Gu, A.: Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps. Insur. Math. Econ. 66, 138–52 (2016)

    Article  MathSciNet  Google Scholar 

  11. Luo, S., Wang, M., Zhu, W.: Maximizing a robust goal-reaching probability with penalization on ambiguity. J. Comput. Appl. Math. 348(2019), 261–281 (2019)

    Article  MathSciNet  Google Scholar 

  12. Liang, Z., Bi, J., Yuen, K.C., Zhang, C.: Optimal mean-variance reinsurance and investment in a jump-diffusion financial market with common shock dependence. Math. Method Oper. Res. 84(1), 155–181 (2016)

    Article  MathSciNet  Google Scholar 

  13. Luo, S., Taksar, M.: On absolute ruin minimization under a diffusion approximation model. Insur. Math. Econ. 48(1), 123–133 (2011)

    Article  MathSciNet  Google Scholar 

  14. Bai, L., Cai, J., Zhou, M.: Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting. Insur. Math. Econ. 53(3), 664–670 (2013)

    Article  MathSciNet  Google Scholar 

  15. Li, D., Zeng, Y., Yang, H.: Robust optimal excess-of-loss reinsurance and investment strategy for an insurer in a model with jumps. Scand. Actuar. J. 2018(2), 145–171 (2018)

    Article  MathSciNet  Google Scholar 

  16. Liang, Z., Guo, J.: Optimal combining quota-share and excess of loss reinsurance to maximize the expected utility. J. Comput. Appl. Math. 36(1–2), 11–25 (2011)

    Article  MathSciNet  Google Scholar 

  17. Zhang, X., Zhou, M., Junyi Guo, J.: Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting. Appl. Stoch. Model Bus. 23(1), 63–71 (2007)

    Article  MathSciNet  Google Scholar 

  18. Zhang, X., Meng, H., Zeng, Y.: Optimal investment and reinsurance strategies for insurers with generalized mean-variance premium principle and no-short selling. Insur. Math. Econ. 67, 125–132 (2016)

    Article  MathSciNet  Google Scholar 

  19. Han, X., Liang, Z., Young, V.R.: Optimal reinsurance strategy to minimize the probability of drawdown under a Mean-Variance premium principle. Scand. Actuar. J. (2020). https://doi.org/10.1080/03461238.2020.1788136

  20. Li, D., Young, V.R.: Optimal reinsurance to minimize the discounted probability of ruin under ambiguity. Insur. Math. Econ. 87, 143–52 (2019)

    Article  MathSciNet  Google Scholar 

  21. Dassios, A., Embrechts, P.: Martingales and insurance risk. Commun. Stat. Stoch. Models 5(2), 181–217 (1989)

    Article  MathSciNet  Google Scholar 

  22. Cai, J.: On the time value of absolute ruin with debit interest. Adv. Appl. Probab. 39(2), 343–359 (2009)

    Article  MathSciNet  Google Scholar 

  23. Gerber, H.U., Yang, H.: Absolute ruin probabilities in a jump diffusion risk model with investment. N. Am. Actuar. J. 11(3), 159–169 (2007)

    Article  MathSciNet  Google Scholar 

  24. Zhou, M., Cai, J.: Optimal dynamic risk control for insurers with state-dependent income. J. Appl. Probab. 51(2), 417–435 (2014)

    Article  MathSciNet  Google Scholar 

  25. Liang, Z., Long, M.: Minimization of absolute ruin probability under negative correlation assumption. Insur. Math. Econ. 65, 247–258 (2015)

    Article  MathSciNet  Google Scholar 

  26. Schmidli, H.: Diffusion approximations for a risk process with the possibility of borrowing and investment. Stoch. Models 10(2), 365–388 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Jacod, J., Shiryaev, A.N. (ed.2): Limit Theorems for Stochastic Processes, Springer, New York (2002)

  28. Grandell, J. (ed.2): Aspects of Risk Theory, Springer, New York (1991)

  29. Liang, X., Liang, Z., Young, V.R.: Optimal reinsurance under the mean-variance premium principle to minimize the probability of ruin. Insur. Math. Econ. 92, 128–146 (2020)

    Article  MathSciNet  Google Scholar 

  30. Stroock, D.W.: Lectures on Stochastic Analysis: Diffusion Theory. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  31. Huang, C., Pages, H.: Optimal consumption and portfolio policies with an infinite horizon: existence and convergence. Ann. Appl. Probab. 2(1), 36–64 (1992)

    Article  MathSciNet  Google Scholar 

  32. Han, X., Liang, Z., Yuen, K.C.: Minimizing the probability of absolute ruin under the mean-variance premium principle. Working paper, School of Mathematical Sciences, Nanjing Normal University (2019)

  33. Liang, X., Young, V.R.: Reaching a bequest goal with life insurance: ambiguity about risk asset’s drift and mortality’s hazard rate. ASTIN Bull. 50(1), 187–221 (2020)

    Article  MathSciNet  Google Scholar 

  34. Zorich, V.A.(ed.2): Mathematical Analysis II, Springer, Heidelberg (2016)

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading and helpful comments on an earlier version of this paper, which led to a considerable improvement of the presentation of the work. The research of Zhibin Liang, Xia Han and Yu Yuan was supported by National Natural Science Foundation of China (Grant No. 11471165). The research of Kam Chuen Yuen was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China Project No. HKU17306220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. The proof of Theorem 1

Proof

The proof of verification theorem is a modified version of Theorem 3.1 in Luo et al. [11] (also see Theorem 6.1 in Bayraktar and Zhang [8]). Firstly, under the optimal reinsurance policy \(R^*\), the surplus process given in (6) becomes

$$\begin{aligned} d\hat{U}^{R^*}_t= & {} \big (r \hat{U}^{R^*}_t - \kappa + \theta \lambda \mathbb {E}\big (R^*_t \big ) + \eta \lambda \mathbb {E}\big (YR^*_t \big ) - \dfrac{\eta }{2} \, \lambda \mathbb {E}\big ((R_t^*)^2 \big ) \big )dt \nonumber \\&+\sqrt{\lambda \mathbb {E}\big ((R^*_t)^2 \big )} \, dB_t. \end{aligned}$$
(67)

Let \(\mathbb {Q}\in \mathcal {Q}\) be an arbitrary probability measure with a corresponding probability distortion process \(\phi \). By the Girsanov theorem, \(B^{\mathbb {Q}}_t=B_t-\int _0^t\phi _sds\) is a \(\mathbb {Q}\)-Brownian motion. Then we have

$$\begin{aligned}\begin{array}{lll}d\hat{U}^{R^*}_t = \Big (r \hat{U}^{R^*}_t - \kappa + \theta \lambda \mathbb {E}\big (R^*_t \big ) + \eta \lambda \mathbb {E}\big (YR^*_t \big ) - \dfrac{\eta }{2} \, \lambda \mathbb {E}\big ( (R^*_t) ^2\big )\\ ~~~~~~~~~~~+\phi _t\sqrt{\lambda \mathbb {E}\big ((R^*_t)^2\big ) }\,\Big )dt +\sqrt{\lambda \mathbb {E}\big ((R^*_t)^2 \big )} \, dB^{\mathbb {Q}}_t.\end{array}\end{aligned}$$

Applying Ito’s Lemma to \(W(\hat{U}^{R^*}_t)\), we have

$$\begin{aligned} \begin{aligned} dW(\hat{U}^{R^*}_{t})&=\Big [\Big (r \hat{U}^{R^*}_t - \kappa + \theta \lambda \mathbb {E}\big (R^*_t \big ) + \eta \lambda \mathbb {E}\big (YR^*_t \big ) - \dfrac{\eta }{2} \, \lambda \mathbb {E}\big ((R^*_t)^2\big ) +\phi _t\sqrt{\lambda \mathbb {E}\big ((R^*_t)^2\big ) }\,\Big )\cdot \\&\quad W_u(\hat{U}^{R^*}_{t}) +\displaystyle \frac{1}{2}\lambda \mathbb {E}\big ((R^*_t)^2\big ) W_{uu}(\hat{U}^{R^*}_{t})\Big ]dt+\sqrt{\lambda \mathbb {E}\big ((R^*_t)^2\big ) }W_u(\hat{U}^{R^*}_{t}) \, dB^{\mathbb {Q}}\\&=\mathcal {A}^{R^*,\phi } W\big (\hat{U}^{R^*}_{t}\big )\,dt+\displaystyle \frac{1}{2\epsilon }\phi _t^2\,dt+\sqrt{\lambda \mathbb {E}\big ((R^*_t)^2\big ) }W_u(\hat{U}^{R^*}_{t}) \, dB^{\mathbb {Q}}_t. \end{aligned} \end{aligned}$$

By Lemma 1, we have \(\tau ^R_{M,N}<\infty \) almost surely for any \(-\infty<M<N<u_s\). Integrating the above equation form 0 to \(\tau ^{R^*}_{M,N}\) and taking \(\mathbb {Q}\)-expectation on both sides, we get

$$\begin{aligned} \begin{aligned} \mathbb {E}^\mathbb {Q}\Big (W(\hat{U}^{R^*}_{\tau ^{R^*}_{M,N}})\Big )-W(u)&=\mathbb {E}^\mathbb {Q}\displaystyle \int _0^{\tau ^{R^*}_{M,N}}\mathcal {A}^{R^*,\phi } W\big (\hat{U}^{R^*}_{t}\big )dt+\mathbb {E}^\mathbb {Q}\displaystyle \int _0^{\tau ^{R^*}_{M,N}}\displaystyle \frac{1}{2\epsilon }\phi _t^2\,dt\\&\quad +\mathbb {E}^\mathbb {Q}\displaystyle \int _0^{\tau ^{R^*}_{M,N}}\sqrt{\lambda \mathbb {E}\big ((R^*_t)^2\big ) }W_u(\hat{U}^{R^*}_{t}) \, dB^{\mathbb {Q}}_t. \end{aligned} \end{aligned}$$

Note that the expectation of the third intergral equals 0 because \(W_u\) and \(\sqrt{\lambda \mathbb {E}\big ((R^*_t)^2\big ) }\) are bounded. Besides, conditions (ii) and (iv) imply that

$$\begin{aligned} 0=\inf \limits _{R \in \mathcal {D}} \sup \limits _{\phi \in \mathcal {R}}\left\{ \mathcal {A}^{R^*,\phi } W(u)\right\} =\sup _{\phi \in \mathcal {R}}\mathcal {A}^{R^*,\phi } W(\hat{U}^{R^*}_t)\ge \mathcal {A}^{R^*,\phi } W(\hat{U}^{R^*}_t). \end{aligned}$$
(68)

Therefore, we obtain

$$\begin{aligned} W(u)\ge \mathbb {E}^\mathbb {Q}\Big (W(\hat{U}^{R^*}_{\tau ^{R^*}_{M,N}})\Big )-\mathbb {E}^\mathbb {Q}\int _0^{\tau ^{R^*}_{M,N}}\displaystyle \frac{1}{2\epsilon }\phi _t^2\,dt. \end{aligned}$$
(69)

We write

$$\begin{aligned} \mathbb {E}^\mathbb {Q}\big (W(\hat{U}^{R^*}_{\tau ^{R^*}_{M,N}})\big )=W(M)\mathbb {Q}_u(\tau ^{R^*}_{M}<\tau ^{R^*}_N )+W(N)\mathbb {Q}_u(\tau ^{R^*}_{M}\ge \tau ^{R^*}_N).\end{aligned}$$
(70)

Because \(W(u_s)=0,\) combining (69) with (70) and letting \(N\rightarrow u_s\) yield

$$\begin{aligned}W(u)\ge W(M)\mathbb {Q}_u( \tau ^{R^*}_{M}<\tau ^{R^*}_{u_s} )-\displaystyle \mathbb {E}^\mathbb {Q}\int _0^{\tau ^{R^*}_{M,u_s}}\frac{1}{2\epsilon }\phi _t^2\,dt.\end{aligned}$$

Since the inequality holds for all \(\mathbb {Q}\in \mathcal {Q}\), we have

$$\begin{aligned} \begin{aligned} W(u)&\ge \sup \limits _{\mathbb {Q}\in \mathcal {Q}}\Big \{W(M)\mathbb {Q}_u( \tau ^{R^*}_{M}<\tau ^{R^*}_{u_s} )-\displaystyle \mathbb {E}^\mathbb {Q}\int _0^{\tau ^{R^*}_{M,u_s}}\frac{1}{2\epsilon }\phi _t^2\,dt\Big \}\\&= \inf \limits _{R\in \mathcal {D}}\sup \limits _{\mathbb {Q}\in \mathcal {Q}}\Big \{W(M)\mathbb {Q}_u( \tau ^{R}_{M}<\tau ^{R}_{u_s} )-\displaystyle \mathbb {E}^\mathbb {Q}\int _0^{\tau ^{R}_{M,u_s}}\frac{1}{2\epsilon }\phi _t^2\,dt\Big \}\\&=\inf \limits _{R\in \mathcal {D}} \sup \limits _{\mathbb {Q}\in \mathcal {Q}}\Big \{W(M)\mathbb {Q}_u( {\tau ^{R}_{M}}<\infty )-\displaystyle \frac{1}{\epsilon }h(\mathbb {Q}_{\tau ^{R}_{M,u_s}}|\mathbb {P}_{\tau ^{R}_{M,u_s}}) \Big \}. \end{aligned} \end{aligned}$$
(71)

The equality in (71) follows from (14) and the fact that \(\tau ^R_M=\infty \) if \(\tau ^{R}_{u_s}\le \tau ^{R}_M\). Note that

$$\begin{aligned} \begin{aligned} V(u)&=\inf \limits _{R \in \mathcal {D}} \sup \limits _{\mathbb {Q}\in \mathcal {Q}}\Big \{\mathbb {Q}_u(\liminf \limits _{t\rightarrow \infty }\hat{U}^{R}_t=-\infty )-\displaystyle \frac{1}{\epsilon }h(\mathbb {Q}_{\tau ^R}|\mathbb {P}_{\tau ^R})\Big \}\\&=\inf \limits _{R \in \mathcal {D}} \sup \limits _{\mathbb {Q}\in \mathcal {Q}}\Big \{\lim \limits _{M\rightarrow -\infty }\mathbb {Q}_u(\tau ^R_{M}<\infty )-\displaystyle \frac{1}{\epsilon }h(\mathbb {Q}_{\tau ^R}|\mathbb {P}_{\tau ^R}) \big \}. \end{aligned} \end{aligned}$$
(72)

Letting \(M\rightarrow -\infty \) in (71), we get \(W(u)\ge V(u).\)

We next prove \(W(u)\le V(u)\). Let R be any admissible reinsurance policy. Under the optimal strategy \(\phi ^*=\phi ^*(R,u)\), there exists a measure \(\mathbb {Q}^*\in \mathcal {Q}\) satisfying \(\frac{d\mathbb {Q}^*_t}{d\mathbb {P}_t}={\varepsilon (\int _0^t\phi ^*_tdB_s)}\), where \(\varepsilon \) denotes the stochastic exponential. It follows from the Girsanov theorem that \(B^{\mathbb {Q}^*}_t=B_t-\int _0^t\phi ^*_sds\). Then the surplus process becomes

$$\begin{aligned} d\hat{U}^R_t= & {} \Big (r \hat{U}^R_t - \kappa + \theta \lambda \mathbb {E}\big (R_t \big ) + \eta \lambda \mathbb {E}\big (YR_t \big ) - \dfrac{\eta }{2} \, \lambda \mathbb {E}\big (R^2_t\big ) +\phi ^*_t\sqrt{\lambda \mathbb {E}\big (R^2_t\big ) }\,\Big )dt\\&+\sqrt{\lambda \mathbb {E}\big (R^2_t\big ) } \, dB^{\mathbb {Q}^*}_t. \end{aligned}$$

Applying Ito’s lemma to \(W(\hat{U}^R_t)\), we have

$$\begin{aligned} \begin{aligned} dW(\hat{U}^R_{t})&=\Big [\Big (r \hat{U}^R_t - \kappa + \theta \lambda \mathbb {E}\big (R_t \big ) + \eta \lambda \mathbb {E}\big (YR_t \big ) - \dfrac{\eta }{2} \, \lambda \mathbb {E}\big (R^2_t\big ) +\phi ^*_t\sqrt{\lambda \mathbb {E}\big (R^2_t\big ) }\,\Big )W_u(\hat{U}^R_{t})\\&\quad +\displaystyle \frac{1}{2}\lambda \mathbb {E}\big (R^2_t\big ) W_{uu}(\hat{U}^R_{t})\Big ]dt+\sqrt{\lambda \mathbb {E}\big (R^2_t\big ) }W_u(\hat{U}^R_{t}) \, dB^{\mathbb {Q}^*}\\&=\mathcal {A}^{R,\phi ^*} W\big (\hat{U}^R_{t}\big )\,dt+\displaystyle \frac{1}{2\epsilon }(\phi _t^*)^2\,dt+\sqrt{\lambda \mathbb {E}\big (R^2_t\big ) }W_u(\hat{U}^R_{t}) \, dB^{\mathbb {Q}^*}_t. \end{aligned} \end{aligned}$$

Integrating the above equation from 0 to \(\tau ^R_{M,N}\) and taking \(\mathbb {Q}^*\)-expectation on both sides yield

$$\begin{aligned} \begin{aligned} \mathbb {E}^{\mathbb {Q}^*}\Big (W(\hat{U}^R_{\tau _{M,N}})\Big )-W(u)&=\mathbb {E}^{\mathbb {Q}^*}\displaystyle \int _0^{\tau ^R_{M,N}}\mathcal {A}^{R,\phi ^*} W\big ((\hat{U}^R_{t})\big )dt+\mathbb {E}^{\mathbb {Q}^*}\displaystyle \int _0^{\tau ^R_{M,N}}\displaystyle \frac{1}{2\epsilon }(\phi ^*_t)^2\,dt\\&\quad +\mathbb {E}^{\mathbb {Q}^*}\displaystyle \int _0^{\tau ^R_{M,N}}\sqrt{\lambda \mathbb {E}\big (R^2_t\big ) }W_u(\hat{U}^R_{t}) \, dB^{\mathbb {Q}^*}_t. \end{aligned} \end{aligned}$$

Similarly, the expectation of the third integral equals 0 due to the fact that \(W_u\) and \(\sqrt{\lambda \mathbb {E}\big (R_t\big )^2 }\) are bounded. By conditions (ii), (iv) and our definition of \(\phi ^*\), we have

$$\begin{aligned} 0=\inf \limits _{R \in \mathcal {D}} \sup \limits _{\phi \in \mathcal {R}}\left\{ \mathcal {A}^{R,\phi } W(u)\right\} \le \sup \limits _{\phi \in \mathcal {R}}\mathcal {A}^{R,\phi } W(\hat{U}^R_t)= \mathcal {A}^{R,\phi ^*} W(\hat{U}^R_t).\end{aligned}$$
(73)

Therefore, we have

$$\begin{aligned} W(u)\le \mathbb {E}^{\mathbb {Q}^*}\big (W(\hat{U}^R_{\tau ^R_{M,N}})\big )-\mathbb {E}^{\mathbb {Q}^*}\int _0^{\tau ^R_{M,N}}\displaystyle \frac{1}{2\epsilon }(\phi ^*_t)^2\,dt.\end{aligned}$$
(74)

Write

$$\begin{aligned} \mathbb {E}^{\mathbb {Q}^*}\big (W(\hat{U}^R_{\tau ^R_{M,N}})\big )=W(M)\mathbb {Q}^*_u(\tau ^R_{M}<\tau ^R_N )+W(N)\mathbb {Q}^*_u(\tau ^R_{M}\ge \tau ^R_N). \end{aligned}$$
(75)

Because \(W(u_s)=0,\) combining (74) with (75) and letting \(N\rightarrow u_s\) yield

$$\begin{aligned} \begin{aligned} W(u)&\le W(M)\mathbb {Q}^*_u\big ( \tau ^R_{M}<\tau ^R_{u_s} \big )-\displaystyle \mathbb {E}^{\mathbb {Q}^*}\int _0^{\tau ^R_{M,u_s}}\frac{1}{2\epsilon }(\phi ^*_t)^2\,dt.\\&= \sup \limits _{\mathbb {Q}\in \mathcal {Q}}\Big \{W(M)\mathbb {Q}_u( \tau ^{R}_{M}<\tau ^{R}_{u_s} )-\displaystyle \mathbb {E}^\mathbb {Q}\int _0^{\tau ^{R}_{M,u_s}}\frac{1}{2\epsilon }\phi _t^2\,dt\Big \}\\&= \sup \limits _{\mathbb {Q}\in \mathcal {Q}}\Big \{W(M)\mathbb {Q}_u( {\tau ^{R}_{M}}<\infty )-\displaystyle \frac{1}{\epsilon }h(\mathbb {Q}_{\tau ^{R}_{M,u_s}}|\mathbb {P}_{\tau ^{R}_{M,u_s}}) \Big \}. \end{aligned} \end{aligned}$$
(76)

This hold for any \(R\in \mathcal {D}\), so we have

$$\begin{aligned} W(u)\le \inf \limits _{R\in \mathcal {D}}\sup \limits _{\mathbb {Q}\in \mathcal {Q}}\Big \{W(M)\mathbb {Q}_u( \tau ^{R}_{M}<\tau ^{R}_{u_s} )-\displaystyle \mathbb {E}^\mathbb {Q}\int _0^{\tau ^{R}_{M,u_s}}\frac{1}{2\epsilon }\phi _t^2\,dt\Big \}\end{aligned}$$
(77)

Letting \(M\rightarrow -\infty \) in (77), it follows from (72) that \(W(u)\le V(u)\). Therefore, we conclude that \(W(u)=V(u)\). Moreover, repeat the analysis above by using \(R^*\) and \(\phi ^*\) in (73) and (74), (73) through (77) hold with equality, and hence

$$\begin{aligned} W(u)=V(u)=V^{R^*,\mathbb {Q}^*}(u).\end{aligned}$$

\(\square \)

1.2 B. The proof of Theorem 2

Proof

Suppose that W is a candidate solution to (19). When \(u_1 <u\le u_s\), the function \(W_1(u)=W(u)\) satisfies the following ordinary differential equation (ODE):

$$\begin{aligned}(\beta _1^*(u)-\eta )W_u(u)+\epsilon W^2_{u}+W_{uu}(u)=0.\end{aligned}$$

Note that (44) is a more explicit version of (34). By letting \(y(u)=W_u\) and rearranging terms, the second order ODE is reduced to

$$\begin{aligned} y^{-2} \,\frac{dy}{du}=(\eta -\beta ^*_1(u))y^{-1}-\epsilon ,\end{aligned}$$
(78)

which is in the form of Bernoulli differential equation. Furthermore, setting \(z(u)=1/y(u)\) yields

$$\begin{aligned}\frac{dz}{du}=(\beta ^*_1(u)-\eta )z+\epsilon ,\end{aligned}$$

and thus has the following general solution

$$\begin{aligned}z(u)=\displaystyle e^{\int _{u_1}^u(\beta ^*_1(w)-\eta )dw}\Big (C_1+\epsilon \int _{u_1}^u e^{\int _{u_1}^y(\eta -\beta ^*_1(w)dw)}dy\Big ),\end{aligned}$$

from which we obtain

$$\begin{aligned}W_1(u)=\displaystyle \int _{u_1}^u\frac{e^{\int _{u_1}^y(\eta -\beta ^*_1(w))dw}}{C_1+\epsilon \int _{u_1}^y e^{\int _{u_1}^{v}(\eta -\beta ^*_1(w))dw}dv}dy+C_2.\end{aligned}$$

Here, \(C_1\) and \(C_2\) are constants to be determined. When \(-\infty <u\le u_1\), the function \(W_2(u)=W(u)\) satisfies the following ODE:

$$\begin{aligned}\big (ru+c-\lambda \mathbb {E}Y\big )W_u(u)+\frac{1}{2}\lambda \mathbb {E}Y^2\Big (\epsilon W^2_{u}(u)+W_{uu}(u)\Big )=0.\end{aligned}$$

Along the same lines, one can obtain

$$\begin{aligned}W_2(u)=\displaystyle \int _{-\infty }^u\frac{e^{\int _{-\infty }^y-\beta ^*_2(w)dw}}{C_3+\epsilon \int _{-\infty }^y e^{\int _{-\infty }^{v}-\beta ^*_2(w)dw}dv}dy+C_4, \end{aligned}$$

where \(C_3\) and \(C_4\) are constants to be determined. By using the boundary conditions in (39) and the smooth-fit conditions, that is,

$$\begin{aligned}W_1(u_1)=W_2(u_1),~~~~~~~~~~ W'_1(u)|_{u=u_1}= W_2'(u)|_{u=u1},\end{aligned}$$

we get

$$\begin{aligned} \left\{ \begin{array}{ll}C_4=1,~~~~~C_2=-\displaystyle \int _{u_1}^{u_s}\frac{e^{\int _{u_1}^y(\eta -\beta ^*_1(w))dw}}{C_1+\epsilon \int _{u_1}^y e^{\int _{u_1}^{v}(\eta -\beta ^*_1(w))dw}dv}dy,\\ C_2=\displaystyle \int _{-\infty }^{u_1}\frac{e^{\int _{-\infty }^y-\beta ^*_2(w)dw}}{C_3+\epsilon \int _{-\infty }^y e^{\int _{-\infty }^{v}-\beta ^*_2(w)dw}dv}dy+C_4,\\ \displaystyle \frac{1}{C_1}=\frac{e^{\int _{-\infty }^{u_1}-\beta ^*_2(w)dw}}{C_3+\epsilon \int _{-\infty }^{u_1} e^{\int _{-\infty }^{v}-\beta ^*_2(w)dw}dv}. \end{array}\right. \end{aligned}$$
(79)

Using these results and Lemma 5, we can show that W equals the right-hand side of (43). In particular, due to the fact that \(C_1\) satisfies conditions (42), it is straightforward to show that W is a non-increasing function with bounded first derivative.

Besides, because of \(\eta -\beta _1^*(u_1)=-\beta ^*_2(u_1)=0,\) it is not difficult to verify that \( W''_1(u)|_{u=u_1}= W''_2(u)|_{u=u_1}.\) Therefore, the function W satisfies all the conditions of Theorem  1. As a result, the probability of absolute ruin V(u) is given by (43), the optimal robust reinsurance strategy is given by (45), and the optimal probability distortion function is given by (46). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Liang, Z., Yuen, K.C. et al. Minimizing the Probability of Absolute Ruin Under Ambiguity Aversion . Appl Math Optim 84, 2495–2525 (2021). https://doi.org/10.1007/s00245-020-09714-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09714-y

Keywords

Mathematics Subject Classification

Navigation