Skip to main content
Log in

Utility Maximization Problem with Transaction Costs: Optimal Dual Processes and Stability

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, we investigate the stability problem of the numéraire-based utility maximization problem in markets with transaction costs, where the stock price is not necessarily a semimartingale. Precisely, the static stability of primal and dual value functions as well as the convergence of primal and dual optimizers are presented when perturbations occur in the utility function and in the physical probability. Furthermore, this study focuses on the optimal dual process (ODP), which induces the dual optimizer and attains optimality for a dynamical dual problem. Properties of ODPs are discussed which are complement of the duality theory for this utility maximization problem. When the parameters of the market and the investor are slightly perturbed, both the dual optimizer and the associated optimal dual process are stable. Thus, a shadow price process is constructed based on the sequence of ODPs corresponding to problems with small misspecified parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These assumptions avoid special notations for possible trading at the terminal time T. In this case, we may assume without loss of generality that the agent liquidates her position in the stock shares at time T. For more details see e.g.  [10, Remark 4.2] or [14, p. 1895].

  2. A real-valued optional process \(X =(X_t)_{0 \le t \le T}\) is called optional strong supermartingale if

    • \(X_{\tau }\) is integrable for every [0, T]-valued stopping time \(\tau \);

    • For all stopping times \(\sigma \) and \(\tau \) with \( 0 \le \sigma < \tau \le T\), we have \( X_{\sigma } \ge {\mathbb {E}}\left[ \left. {X_{\tau }}\right| {{\mathcal {F}}_{\sigma }}\right] . \)

    It is a generalisation of càdlàg supermartingales. See [38] and [21, Appendix I] for more properties.

References

  1. Backhoff-Veraguas, J., Silva, F.: Sensitivity analysis for expected utility maximization in incomplete brownian market models. Math. Financ. Econ. 12(3), 387–411 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Bayraktar, E., Kravitz, R.: Stability of exponential utility maximization with respect to market perturbations. Stoch. Process. Appl. 123(5), 1671–1690 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Bayraktar, E., Dolinsky, Y., Guo, J.: Continuity of utility maximization under weak convergence. Preprint (2020)

  4. Bayraktar, E., Dolinskyi, L., Dolinsky, Y.: Extended weak convergence and utility maximization with proportional transaction costs. Preprint (2020)

  5. Bender, C.: Simple arbitrage. Ann. Appl. Probab. 22(5), 2067–2085 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Benedetti, G., Campi, L., Kallsen, J., Muhle-Karbe, J.: On the existence of shadow prices. Finance Stoch. 17(4), 801–818 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Bouchard, B.: Utility maximization on the real line under proportional transaction costs. Finance Stoch. 6(4), 495–516 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Bouchard, B., Mazliak, L.: A multidimensional bipolar theorem in \(L^0({\mathbb{R}}^d;\Omega; {\cal{F}}; { P})\). Stoch. Process. Appl. 107(2), 213–231 (2003)

    MATH  Google Scholar 

  9. Campi, L., Owen, M.P.: Multivariate utility maximization with proportional transaction costs. Finance Stoch. 15(3), 461–499 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Campi, L., Schachermayer, W.: A super-replication theorem in Kabanov’s model of transaction costs. Finance Stoch. 10(4), 579–596 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Carassus, L., Rásonyi, M.: Optimal strategies and utility-based prices converge when agents’ preferences do. Math. Oper. Res. 32(1), 102–117 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Cvitanić, J., Karatzas, I.: Hedging and portfolio optimization under transaction costs: a martingale approach. Math. Finance 6(2), 133–165 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Cvitanić, J., Wang, H.: On optimal terminal wealth under transaction costs. J. Math. Econ. 35(2), 223–231 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Czichowsky, C., Schachermayer, W.: Duality theory for portfolio optimisation under transaction costs. Ann. Appl. Probab. 26(3), 1888–1941 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Czichowsky, C., Schachermayer, W.: Strong supermartingales and limits of non-negative martingales. Ann. Probab. 44(1), 171–205 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Czichowsky, C., Muhle-Karbe, J., Schachermayer, W.: Transaction costs, shadow prices, and duality in discrete time. SIAM J. Financ. Math. 5(1), 258–277 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Czichowsky, C., Schachermayer, W., Yang, J.: Shadow prices for continuous processes. Math. Finance 27(3), 623–658 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Czichowsky, C., Peyre, R., Schachermayer, W., Yang, J.: Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs. Finance Stoch. 22(1), 161–180 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Deelstra, G., Pham, H., Touzi, N.: Dual formulation of the utility maximization problem under transaction costs. Ann. Appl. Probab. 11(4), 1353–1383 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300(3), 463–520 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Dellacherie, C., Meyer, P.A.: Probabilities and Potential. B. Theory of Martingales. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  22. Frei, C.: Convergence results for the indifference value based on the stability of BSDEs. Stochastics 85(3), 464–488 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Gu, L., Lin, Y., Yang, J.: On the dual problem of utility maximization in incomplete markets. Stoch. Process. Appl. 126(4), 1019–1035 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Guasoni, P.: Optimal investment with transaction costs and without semi-martingales. Ann. Appl. Probab. 12(4), 1227–1246 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Guasoni, P.: No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Finance 16(3), 569–582 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Herdegen, M., Muhle-Karbe, J.: Stability of Radner equilibria with respect to small frictions. Finance Stoch. 22(2), 443–502 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ. Theory 66(1), 178–197 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Jouini, E., Napp, C.: Convergence of utility functions and convergence of optimal strategies. Finance Stoch. 8(1), 133–144 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Kallsen, J., Muhle-Karbe, J.: Existence of shadow prices in finite probability spaces. Math. Methods of Oper. Res. 73(2), 251–262 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Kardaras, C., Žitković, G.: Stability of utility maximization problem with random endowment in incomplete markets. Math. Finance 21(2), 313–333 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl Probab. 9(3), 904–950 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Kramkov, D., Sîrbu, M.: On the two-times differentiability of the value functions in the problem of optimal investment in incomplete markets. Ann. Appl Probab. 16(3), 1352–1384 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Kramkov, D., Sîrbu, M.: Sensitivity analysis of utility-based prices and risk-tolerance wealth process. Ann. Appl Probab. 16(4), 2140–2194 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Larsen, K.: Continuity of utility-maximization with respect to preferences. Math. Finance 19(2), 237–250 (2009)

    MathSciNet  MATH  Google Scholar 

  35. Larsen, K., Yu, H.: Horizon dependence of utility optimizers in incomplete models. Finance Stoch. 16(4), 779–801 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Larsen, K., Žitković, G.: Stability of utility-maximization in incomplete markets. Stoch. Process. Appl. 117(11), 1642–1662 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Larsen, K., Mostovyi, O., Žitković, G.: An expansion in the model space in the context of utility maximization. Finance Stoch. 22(2), 297–326 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Mertens, J.-F.: Théorie des processus stochastiques généraux applications aux surmartingales. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 22(1), 45–68 (1972)

    MathSciNet  MATH  Google Scholar 

  39. Mocha, M., Westray, N.: The stability of the constrained utility maximization problem: a BSDE approach. SIAM J. Financ. Math. 4(1), 117–150 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Mostovyi, O., Sîrbu, M.: Sensitivity analysis of the utility maximization problem with respect to model perturbations. Finance Stoch. 23(3), 595–640 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  42. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    MATH  Google Scholar 

  43. Salinetti, G., Wets, R.J.-B.: On the relations between two types of convergence for convex functions. J. Math. Anal. Appl. 60(1), 211–226 (1977)

    MathSciNet  MATH  Google Scholar 

  44. Schachermayer, W.: The Asymptotic Theory of Transaction Costs. Lecture Notes Universität Wien & ITS-ETH Zürich. European Mathematical Society, Zurich (2017)

  45. Weston, K.: Stability of utility maximization in nonequivalent markets. Finance Stoch. 20(2), 511–541 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Xing, H.: Stability of the exponential utility maximization problem with respect to preferences. Math. Finance 27(1), 38–67 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Yu, X.: Optimal consumption under habit formation in markets with transaction costs and random endowments. Ann. Appl. Probab. 27(2), 960–1002 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from National Natural Science Foundation of China, Youth Science Fund Project under Grant 11801365 and 11901097, from Educational research projects for young and middle-aged teachers in Fujian under grant JT180073, from the research fund of Fujian Engineering Research Center of Public Service Big Data Mining and Application, from the Austrian Science Fund (FWF) under Grant P25815, from the European Research Council under European Research Council (ERC) Advanced Grant 321111 and from the University of Vienna under short-term grand abroad (KWA). This work was partially completed during the visit of L. Gu and J. Yang at the Centre de Mathématiques Appliqées, École Polytechnique, hosted by Prof. N. Touzi, who are gratefully acknowledged. The comments from the anonymous referees are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqing Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Lin, Y. & Yang, J. Utility Maximization Problem with Transaction Costs: Optimal Dual Processes and Stability. Appl Math Optim 84, 1903–1922 (2021). https://doi.org/10.1007/s00245-020-09699-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09699-8

Keywords

Mathematics Subject Classification

Navigation