Skip to main content
Log in

Second Order Linear Evolution Equations with General Dissipation

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

The contraction semigroup \(S(t)=\mathrm{e}^{t\mathbb {A}}\) generated by the abstract linear dissipative evolution equation

$$\begin{aligned} \ddot{u} + A u + f(A) \dot{u}=0 \end{aligned}$$

is analyzed, where A is a strictly positive selfadjoint operator and f is an arbitrary nonnegative continuous function on the spectrum of A. A full description of the spectrum of the infinitesimal generator \(\mathbb {A}\) of S(t) is provided. Necessary and sufficient conditions for the stability, the semiuniform stability and the exponential stability of the semigroup are found, depending on the behavior of f and the spectral properties of its zero-set. Applications to wave, beam and plate equations with fractional damping are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is understood that, in the real case, the results of this paper apply by considering the natural complexifications of the involved spaces and operators.

References

  1. Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 306, 837–852 (1988)

    Article  MathSciNet  Google Scholar 

  2. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser, Basel (2011)

    Book  Google Scholar 

  3. Bátkai, A., Engel, K.-J.: Exponential decay of \(2\times 2\) operator matrix semigroups. J. Comput. Anal. Appl. 6, 153–163 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Batty, C.J.K.: Asymptotic behaviour of semigroups of operators. In: Functional Analysis and Operator Theory, vol. 30. Banach Center Publ. Polish Acad. Sci, Warsaw (1994)

  5. Batty, C.J.K., Duyckaerts, T.: Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8, 765–780 (2008)

    Article  MathSciNet  Google Scholar 

  6. Batty, C.J.K., Chill, R., Tomilov, Y.: Fine scales of decay of operator semigroups. J. Eur. Math. Soc. (JEMS) 18, 853–929 (2016)

    Article  MathSciNet  Google Scholar 

  7. Benchimol, C.D.: A note on weak stabilizability of contraction semigroups. SIAM J. Control Optim. 16, 373–379 (1978)

    Article  MathSciNet  Google Scholar 

  8. Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)

    Article  MathSciNet  Google Scholar 

  9. Chen, G., Russell, D.L.: A mathematical model for linear elastic systems with structural damping. Q. Appl. Math. 39, 433–454 (1981/82)

  10. Chen, S., Triggiani, R.: Proof of extensions of two conjectures on structural damping for elastic systems. Pac. J. Math. 136, 15–55 (1989)

    Article  MathSciNet  Google Scholar 

  11. Chen, S., Triggiani, R.: Gevrey class semigroups arising from elastic systems with gentle dissipation: the case \(0< \alpha < \tfrac{1}{2}\). Proc. Am. Math. Soc. 110, 401–415 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Chen, S., Triggiani, R.: Characterization of domains of fractional powers of certain operators arising in elastic systems, and applications. J. Differ. Equ. 88, 279–293 (1990)

    Article  MathSciNet  Google Scholar 

  13. Danese, V., Dell’Oro, F., Pata, V.: Stability analysis of abstract systems of Timoshenko type. J. Evol. Equ. 16, 587–615 (2016)

    Article  MathSciNet  Google Scholar 

  14. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  15. Fatori, L.H., Garay, M.Z., Muñoz Rivera, J.E.: Differentiability, analyticity and optimal rates of decay for damped wave equations. Electron. J. Differ. Equ. 48, 13 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Gearhart, L.: Spectral theory for contraction semigroups on Hilbert space. Trans. Am. Math. Soc. 236, 385–394 (1978)

    Article  MathSciNet  Google Scholar 

  17. Ghisi, M., Gobbino, M., Haraux, A.: Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation. Trans. Am. Math. Soc. 368, 2039–2079 (2016)

    Article  MathSciNet  Google Scholar 

  18. Goldstein, G.R., Goldstein, J.A., Menzala, G.P.: On the overdamping phenomenon: a general result and applications. Q. Appl. Math. 71, 183–199 (2013)

    Article  MathSciNet  Google Scholar 

  19. Goldstein, G.R., Goldstein, J.A., Reyes, G.: Overdamping and energy decay for abstract wave equations with strong damping. Asymptot. Anal. 88, 217–232 (2014)

    Article  MathSciNet  Google Scholar 

  20. Greiner, W.: Relativistic Quantum Mechanics, Wave Equations, 3rd edn. Springer, Berlin (2000)

    Book  Google Scholar 

  21. Griniv, R.O., Shkalikov, A.A.: Exponential stability of semigroups associated with some operator models in mechanics. Math. Notes 73, 618–624 (2003). (Russian)

    Article  MathSciNet  Google Scholar 

  22. Griniv, R.O., Shkalikov, A.A.: Exponential energy decay of solutions of equations corresponding to some operator models in mechanics. Funct. Anal. Appl. 38, 163–172 (2004). (Russian)

    Article  MathSciNet  Google Scholar 

  23. Haraux, A., Ôtani, M.: Analyticity and regularity for a class of second order evolution equations. Evol. Equ. Control Theory 2, 101–117 (2013)

    Article  MathSciNet  Google Scholar 

  24. Huang, F.: On the holomorphic property of the semigroup associated with linear elastic systems with structural damping. Acta Math. Sci. 5, 271–277 (1985)

    Article  MathSciNet  Google Scholar 

  25. Huang, F.: On the mathematical model for linear elastic systems with analytic damping. SIAM J. Control Optim. 26, 714–724 (1988)

    Article  MathSciNet  Google Scholar 

  26. Huang, F., Liu, K.: Holomorphic property and exponential stability of the semigroup associated with linear elastic systems with damping. Ann. Differ. Equ. 4, 411–424 (1988)

    MathSciNet  Google Scholar 

  27. Jacob, B., Trunk, C.: Location of the spectrum of operator matrices which are associated to second order equations. Oper. Matrices 1, 45–60 (2007)

    Article  MathSciNet  Google Scholar 

  28. Jacob, B., Trunk, C.: Spectrum and analyticity of semigroups arising in elasticity theory and hydromechanics. Semigroup Forum 79, 79–100 (2009)

    Article  MathSciNet  Google Scholar 

  29. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  30. Lasiecka, I., Triggiani, R.: Domains of Fractional Powers of Matrix-Valued Operators: A General Approach, Oper. Theory Adv. Appl., vol. 250. Birkhäuser/Springer, Cham (2015)

    MATH  Google Scholar 

  31. Liu, K., Liu, Z.: Analyticity and differentiability of semigroups associated with elastic systems with damping and gyroscopic forces. J. Differ. Equ. 141, 340–355 (1997)

    Article  MathSciNet  Google Scholar 

  32. Liu, Z., Yong, J.: Qualitative properties of certain \(C_0\) semigroups arising in elastic systems with various dampings. Adv. Differ. Equ. 3, 643–686 (1998)

    MATH  Google Scholar 

  33. Liu, Z., Zhang, Q.: A note on the polynomial stability of a weakly damped elastic abstract system. Z. Angew. Math. Phys. 66, 1799–1804 (2015)

    Article  MathSciNet  Google Scholar 

  34. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Chapman & Hall/CRC, Boca Raton (1999)

    MATH  Google Scholar 

  35. Lyubich, Y.I., Vũ, Q.P.: Asymptotic stability of linear differential equations in Banach spaces. Stud. Math. 88, 37–42 (1988)

    Article  MathSciNet  Google Scholar 

  36. Mugnolo, D.: A Variational Approach to Strongly Damped Wave Equations, Functional Analysis and Evolution Equations, 503–514. Birkhäuser, Basel (2008)

    Google Scholar 

  37. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  38. Prüss, J.: On the spectrum of \(\text{ C }_0\)-semigroups. Trans. Am. Math. Soc. 284, 847–857 (1984)

    Article  Google Scholar 

  39. Rozendaal, J., Seifert, D., Stahn, R.: Optimal rates of decay for operator semigroups on Hilbert spaces. Adv. Math. 346, 359–388 (2019)

    Article  MathSciNet  Google Scholar 

  40. Rudin, W.: Functional Analysis. McGraw-Hill, New York-Düsseldorf-Johannesburg (1973)

    MATH  Google Scholar 

  41. Sz-Nagy, B., Foias, C.: Harmonic Analysis of Operators on Hilbert Space. North-Holland Publishing Company, Amsterdam (1970)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted with the anonymous referees for valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Dell’Oro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Portraits of the Spectra

Appendix: Portraits of the Spectra

We illustrate some particular instances of the spectra of the operators \(\mathbb {A}_\vartheta \), \(\mathbb {A}_\vartheta ^0\) and \(\mathbb {A}_\vartheta ^\omega \) discussed in Sect. 15.

Portraits of \(\varvec{\sigma (\mathbb {A}_\vartheta )}\). Choosing \(H=V=L^2(0,\pi )\) and \(A=L\), the eigenvalues \(\lambda _n\) are equal to

$$\begin{aligned} \lambda _n= n^2,\quad \,\, n=1,2,3,\ldots \end{aligned}$$

Accordingly, the eigenvalues \(\xi _{\lambda _n}^{\pm }\) of \(\mathbb {A}_\vartheta \) take the form

$$\begin{aligned} \xi _{\lambda _n}^{\pm }= {\left\{ \begin{array}{ll} \displaystyle -\frac{n^{2\vartheta }}{2} \pm \frac{\sqrt{n^{4\vartheta }-4n^2}}{2} &{}\quad \text {if }\, n^{2\vartheta -1}\ge 2,\\ \displaystyle -\frac{n^{2\vartheta }}{2} \pm \mathrm{i}\frac{\sqrt{4n^2-n^{4\vartheta }}}{2} &{}\quad \text {if }\, n^{2\vartheta -1}< 2. \end{array}\right. } \end{aligned}$$

Making use of Corollary 15.2 and the software Mathematica®, we have the following pictures of \(\sigma (\mathbb {A}_\vartheta )\), corresponding to the cases \(\vartheta =-1,0,1\) (Figs. 1, 2, 3).

Fig. 1
figure 1

The case \(\vartheta =-1\) (“subdamped” wave equation)

Fig. 2
figure 2

The case \(\vartheta =0\) (weakly damped wave equation)

Fig. 3
figure 3

The case \(\vartheta =1\) (strongly damped wave equation). Behavior around zero (left) and global behavior (right)

Fig. 4
figure 4

The case \(\vartheta =-1\) (“subdamped” beam equation)

Fig. 5
figure 5

The case \(\vartheta =0\) (beam equation with frictional damping)

Fig. 6
figure 6

The case \(\vartheta =1\) (beam equation with Kelvin–Voigt damping). Behavior around zero (left) and global behavior (right)

Fig. 7
figure 7

The case \(\vartheta =0\) and \(\omega =1\) (beam equation with rotational inertia and frictional damping)

Portraits of \(\varvec{\sigma (\mathbb {A}_\vartheta ^0)}\). Choosing \(H=V=L^2(0,\pi )\), the eigenvalues \(\lambda _n^2\) of the operator \(A=L^2\) are equal to

$$\begin{aligned} \lambda _n^2= n^4,\quad \,\, n=1,2,3,\ldots \end{aligned}$$

Therefore, the eigenvalues \(\xi _{\lambda _n^2}^{\pm }\) of \(\mathbb {A}_\vartheta ^0\) are given by

$$\begin{aligned} \xi _{\lambda _n^2}^{\pm }= {\left\{ \begin{array}{ll} \displaystyle -\frac{n^{2\vartheta }}{2} \pm \frac{\sqrt{n^{4\vartheta }-4n^4}}{2} &{}\quad \text {if }\, n^{2(\vartheta -1)}\ge 2,\\ \displaystyle -\frac{n^{2\vartheta }}{2} \pm \mathrm{i}\frac{\sqrt{4n^4-n^{4\vartheta }}}{2} &{}\quad \text {if }\, n^{2(\vartheta -1)}< 2. \end{array}\right. } \end{aligned}$$

Making use of Theorem 15.4 and the software Mathematica®, we get the following pictures of \(\sigma (\mathbb {A}_\vartheta ^0)\), corresponding to the choices \(\vartheta =-1,0,1\) (Figs. 4, 5, 6).

Portraits of \(\varvec{\sigma (\mathbb {A}_\vartheta ^\omega )}\). Choosing \(H=V^1=H_0^1(0,\pi )\), the eigenvalues \(\nu _n\) of the operator \(A = (1+ \omega L)^{-1} L^2\) are equal to

$$\begin{aligned} \nu _n = \frac{n^4}{1+\omega n^2}. \end{aligned}$$

Hence, the eigenvalues \(\xi _{\nu _n}^{\pm }\) of \(\mathbb {A}_\vartheta ^\omega \) read

$$\begin{aligned} \xi _{\nu _n}^{\pm }= {\left\{ \begin{array}{ll} \displaystyle -\frac{1}{2}\Big [f\big (\tfrac{n^4}{1+\omega n^2}\big ) \mp \sqrt{\big [f\big (\tfrac{n^4}{1+\omega n^2}\big )\big ]^2-\tfrac{4n^4}{1+\omega n^2}}\Big ] &{}\quad \text {if } f\big (\tfrac{n^4}{1+\omega n^2}\big )\ge \frac{2n^2}{\sqrt{1+\omega n^2}},\\ \displaystyle -\frac{1}{2}\Big [f\big (\tfrac{n^4}{1+\omega n^2}\big ) \mp \mathrm{i}\sqrt{\tfrac{4n^4}{1+ \omega n^2}-\big [f\big (\tfrac{n^4}{1+\omega n^2}\big )\big ]^2}\Big ] &{}\quad \text {if } f\big (\tfrac{n^4}{1+\omega n^2}\big )< \frac{2n^2}{\sqrt{1+\omega n^2}}, \end{array}\right. } \end{aligned}$$

where f is given by (2.8). Making use of Theorem 15.6 and the software Mathematica®, we obtain the following pictures of \(\sigma (\mathbb {A}_\vartheta ^\omega )\), corresponding to the choices \(\vartheta =0,1\) (Figs. 7, 8).

Fig. 8
figure 8

The case \(\vartheta =1\) with \(\omega =1\) (left) and \(\omega =1/200\) (right) (beam equation with rotational inertia and Kelvin–Voigt damping). Note that the spectrum becomes close to two straight lines as \(\omega \rightarrow 0\). Compare with Fig. 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dell’Oro, F., Pata, V. Second Order Linear Evolution Equations with General Dissipation. Appl Math Optim 83, 1877–1917 (2021). https://doi.org/10.1007/s00245-019-09613-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09613-x

Keywords

Mathematics Subject Classification

Navigation