Skip to main content
Log in

Global Existence and Blow-Up for a Parabolic Problem of Kirchhoff Type with Logarithmic Nonlinearity

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study the following parabolic problem of Kirchhoff type with logarithmic nonlinearity:

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle {u_t} +{M([u]^2_s){\mathcal {L}}_Ku}={|u|^{p-2}u\log |u|},\ \ \ &{}\hbox { in } \Omega \times (0,+\infty ),\\ \displaystyle u(x,t)=0,&{}\hbox { in }({\mathbb {R}}^N\setminus \Omega )\times (0,+\infty ),\\ \displaystyle u(x,0)=u_0(x),&{}\hbox { in }\Omega , \end{array}\right. \end{aligned}$$

where \([u]_s\) is the Gagliardo seminorm of u, \(\Omega \subset {\mathbb {R}}^N\) is a bounded domain with Lipschitz boundary, \(0<s<1\), \({\mathcal {L}}_K\) is a nonlocal integro-differential operator defined in (1.2), which generalizes the fractional Laplace operator \((-\Delta )^s\), \(u_0\) is the initial function, and \(M:[0,+\infty )\rightarrow [0,+\infty )\) is continuous. Let \(J(u_0)\) be the initial energy (see (2.1) for the definition of J), \(d>0\) be the mountain-pass level given in (2.4), and \({\widetilde{M}}\in (0,d]\) be the constant defined in (2.6). Firstly, we get the conditions on global existence and finite time blow-up for \(J(u_0)\le d\). Then we study the lower and upper bounds of blow-up time to blow-up solutions under some appropriate conditions. Secondly, for \(J(u_0)\le {\widetilde{M}}\), the growth rate of the solution is got. Moreover, we give some blow-up conditions independent of d and study the upper bound of the blow-up time. Thirdly, the behavior of the energy functional as \(t\rightarrow T\) is also discussed, where T is the blow-up time. In addition, for \(J(u_0)\le d\), we give some equivalent conditions for the solutions blowing up in finite time or existing globally. Finally, we consider the existence of ground state solutions and the asymptotical behavior of the general global solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Notices Am. Math. Soc. 51(11), 1336–1347 (2004)

    MATH  Google Scholar 

  2. Bisci, G.M., Radulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Volume 162 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  3. Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications, vol. 20 of Lecture Notes of the Unione Matematica Italiana. Springer, [Cham]; Unione Matematica Italiana, Bologna (2016)

  4. Cao, Y., Liu, C.: Initial boundary value problem for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity. Electron. J. Differ. Equ., pages Paper No. 116, 19 (2018)

  5. Chen, H., Tian, S.: Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. J. Differ. Equ. 258(12), 4424–4442 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chen, H., Luo, P., Liu, G.: Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity. J. Math. Anal. Appl. 422(1), 84–98 (2015)

    Article  MathSciNet  Google Scholar 

  7. Del Pino, M., Dolbeault, J.: Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the $p$-Laplacian. C. R. Math. Acad. Sci. Paris 334(5), 365–370 (2002)

    Article  MathSciNet  Google Scholar 

  8. Del Pino, M., Dolbeault, J., Gentil, I.: Nonlinear diffusions, hypercontractivity and the optimal $L^p$-Euclidean logarithmic Sobolev inequality. J. Math. Anal. Appl. 293(2), 375–388 (2004)

    Article  MathSciNet  Google Scholar 

  9. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  10. Ding, H., Zhou, J.: Global existence and blow-up for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity. J. Math. Anal. Appl. 478(2), 393–420 (2019)

    Article  MathSciNet  Google Scholar 

  11. Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the whole of ${\mathbb{R}}^n$, vol. 15 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa (2017)

  12. Dong, Z., Zhou, J.: Global existence and finite time blow-up for a class of thin-film equation. Z. Angew. Math. Phys. 68(4), 89 (2017)

    Article  MathSciNet  Google Scholar 

  13. Feng, M., Zhou, J.: Global existence and blow-up of solutions to a nonlocal parabolic equation with singular potential. J. Math. Anal. Appl. 464(2), 1213–1242 (2018)

    Article  MathSciNet  Google Scholar 

  14. Han, Y., Li, Q.: Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy. Comput. Math. Appl. 75(9), 3283–3297 (2018)

    Article  MathSciNet  Google Scholar 

  15. Han, Y., Gao, W., Sun, Z., Li, H.: Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy. Comput. Math. Appl. 76(10), 2477–2483 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ji, C., Szulkin, A.: A logarithmic Schrödinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437(1), 241–254 (2016)

    Article  MathSciNet  Google Scholar 

  17. Ji, S., Yin, J., Cao, Y.: Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity. J. Differ. Equ. 261(10), 5446–5464 (2016)

    Article  MathSciNet  Google Scholar 

  18. Jiang, R., Zhou, J.: Blow-up and global existence of solutions to a parabolic equation associated with the fraction $p$-Laplacian. Commun. Pure Appl. Anal. 18(3), 1205–1226 (2019)

    Article  MathSciNet  Google Scholar 

  19. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E (3) 66(5), 056108 (2002)

    Article  MathSciNet  Google Scholar 

  20. Le, C.N., Le, X.T.: Global solution and blow-up for a class of $p$-Laplacian evolution equations with logarithmic nonlinearity. Acta Appl. Math. 151, 149–169 (2017)

    Article  MathSciNet  Google Scholar 

  21. Le, C.N., Le, X.T.: Global solution and blow-up for a class of pseudo $p$-Laplacian evolution equations with logarithmic nonlinearity. Comput. Math. Appl. 73(9), 2076–2091 (2017)

    Article  MathSciNet  Google Scholar 

  22. Levine, H.A.: Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+{{{\cal{F}}}}(u)$. Trans. Am. Math. Soc. 192, 1–21 (1974)

    MathSciNet  MATH  Google Scholar 

  23. Levine, H.A.: Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J. Math. Anal. 5, 138–146 (1974)

    Article  MathSciNet  Google Scholar 

  24. Lions, J.-L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proceedings of International Symposium, Institute of Mathematics, Universidade Federal Rio de Janeiro, Rio de Janeiro, 1977), vol. 30 of North-Holland Math. Stud., pp. 284–346. North-Holland, Amsterdam, New York (1978)

  25. Liu, H., Liu, Z., Xiao, Q.: Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity. Appl. Math. Lett. 79, 176–181 (2018)

    Article  MathSciNet  Google Scholar 

  26. Pan, N., Zhang, B., Cao, J.: Degenerate Kirchhoff-type diffusion problems involving the fractional $p$-Laplacian. Nonlinear Anal. Real World Appl. 37, 56–70 (2017)

    Article  MathSciNet  Google Scholar 

  27. Payne, L.E., Sattinger, D.H.: Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22(3–4), 273–303 (1975)

    Article  MathSciNet  Google Scholar 

  28. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)

    Article  MathSciNet  Google Scholar 

  29. Squassina, M., Szulkin, A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc. Var. Partial Differ. Equ. 54(1), 585–597 (2015)

    Article  Google Scholar 

  30. Sun, F., Liu, L., Wu, Y.H.: Finite time blow-up for a class of parabolic or pseudo-parabolic equations. Comput. Math. Appl. 75(10), 3685–3701 (2018)

    Article  MathSciNet  Google Scholar 

  31. Sun, F., Liu, L., Wu, Y.H.: Finite time blow-up for a thin-film equation with initial data at arbitrary energy level. J. Math. Anal. Appl. 458(1), 9–20 (2018)

    Article  MathSciNet  Google Scholar 

  32. Xiang, M.Q., Rădulescu, V.D., Zhang, B.: Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity 31(7), 3228–3250 (2018)

    Article  MathSciNet  Google Scholar 

  33. Xu, G., Zhou, J.: Global existence and blow-up for a fourth order parabolic equation involving the Hessian. NoDEA Nonlinear Differ. Equ. Appl 24(4), 41 (2017)

    Article  MathSciNet  Google Scholar 

  34. Xu, G.Y., Zhou, J.: Global existence and blow-up of solutions to a singular non-Newton polytropic filtration equation with critical and supercritical initial energy. Commun. Pure Appl. Anal. 17(5), 1805–1820 (2018)

    Article  MathSciNet  Google Scholar 

  35. Xu, G.Y., Zhou, J.: Global existence and finite time blow-up of the solution for a thin-film equation with high initial energ. J. Math. Anal. Appl. 458(1), 521–535 (2018)

    Article  MathSciNet  Google Scholar 

  36. Yang, Y., Tian, X., Zhang, M., Shen, J.: Blowup of solutions to degenerate Kirchhoff-type diffusion problems involving the fractional $p$-Laplacian. Electron. J. Differ. Equ. 2018(155), 1–22 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Zeidler, E.: Nonlinear functional analysis and its applications. I. Springer, New York (1986)

    Book  Google Scholar 

  38. Zhang, H., Liu, G., Hu, Q.Y.: Exponential decay of energy for a logarithmic wave equation. J. Partial Differ. Equ. 28(3), 269–277 (2015)

    Article  MathSciNet  Google Scholar 

  39. Zheng, S.: Nonlinear evolution equations, vol. 133 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton (2004)

  40. Zhou, J.: $L^2$-norm blow-up of solutions to a fourth order parabolic PDE involving the Hessian. J. Differ. Equ. 265(9), 4632–4641 (2018)

    Article  MathSciNet  Google Scholar 

  41. Zhou, J.: Global asymptotical behavior and some new blow-up conditions of solutions to a thin-film equation. J. Math. Anal. Appl. 464(2), 1290–1312 (2018)

    Article  MathSciNet  Google Scholar 

  42. Zhou, J.: Ground state solution for a fourth-order elliptic equation with logarithmic nonlinearity modeling epitaxial growth. Comput. Math. Appl. 78(6), 1878–1886 (2019)

    Article  MathSciNet  Google Scholar 

  43. Zhou, J.: Global asymptotical behavior of solutions to a class of fourth order parabolic equation modeling epitaxial growth. Nonlinear Anal. Real World Appl. 48, 54–70 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Graduate Student Scientific Research Innovation Projects in Chongqing (No. CYS19087) and NSFC (Grant No. 11201380).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Zhou, J. Global Existence and Blow-Up for a Parabolic Problem of Kirchhoff Type with Logarithmic Nonlinearity. Appl Math Optim 83, 1651–1707 (2021). https://doi.org/10.1007/s00245-019-09603-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09603-z

Keywords

Mathematics Subject Classification

Navigation