Skip to main content
Log in

Mean-Expectile Portfolio Selection

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider a mean-expectile portfolio selection problem in a continuous-time diffusion model. We exploit the close relationship between expectiles and the Omega performance measure to reformulate the problem as the maximization of the Omega measure, and show the equivalence between the two problems. After showing that the solution for the mean-expectile problem is not attainable but that the value function is finite, we modify the problem by introducing a bound on terminal wealth and obtain the solution by Lagrangian duality. The global expectile minimizing portfolio and efficient frontier with a terminal wealth bound are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. \(Z\equiv d\) is not feasible, since \({\mathbb {E}}[\xi _{T}] = e^{-rT} > x_{0}/d\); so \({\mathbb {E}}[(Y-{\mathcal {E}}_{Y}(\alpha ))_{+}] > 0\).

References

  1. Adam, A., Houkari, M., Laurent, J.-P.: Spectral risk measures and portfolio selection. J. Bank. Financ. 32(9), 1870–1882 (2008)

    Article  Google Scholar 

  2. Alexander, G.J., Baptista, A.M.: Economic implications of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis. J. Econ. Dyn. Control 26(7), 1159–1193 (2002)

    Article  MathSciNet  Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bellini, F., Di Bernardino, E.: Risk management with expectiles. Eur. J. Financ. 23(6), 487–506 (2017)

    Article  Google Scholar 

  5. Bellini, F., Klar, B., Müller, A., Gianin, E.R.: Generalized quantiles as risk measures. Insurance 54, 41–48 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bellini, F., Klar, B., Müller, A.: Expectiles, Omega ratios and stochastic ordering. Methodol. Comput. Appl. Probab. 20, 855 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bernard, C., Vanduffel, S., Ye, J.: Optimal strategies under omega ratio. Eur. J. Oper. Res. 275(2), 755–767 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cai, J., Weng, C.: Optimal reinsurance with expectile. Scand. Actuar. J. 2016(7), 624–645 (2016)

    Article  MathSciNet  Google Scholar 

  9. Campbell, R., Huisman, R., Koedijk, K.: Optimal portfolio selection in a value-at-risk framework. J. Bank. Financ. 25(9), 1789–1804 (2001)

    Article  Google Scholar 

  10. Chiu, M.C., Wong, H.Y., Li, D.: Roy’s safety-first portfolio principle in financial risk management of disastrous events. Risk Anal. 32(11), 1856–1872 (2012)

    Article  Google Scholar 

  11. Cvitanić, J., Karatzas, I.: On dynamic measures of risk. Financ. Stoch. 3(4), 451–482 (1999)

    Article  MathSciNet  Google Scholar 

  12. Emmer, S., Kratz, M., Tasche, D.: What is the best risk measure in practice? A comparison of standard measures. J. Risk 18(2), 31 (2015)

    Article  Google Scholar 

  13. He, X.D., Jin, H., Zhou, X.Y.: Dynamic portfolio choice when risk is measured by weighted VaR. Math. Oper. Res. 40(3), 773–796 (2015)

    Article  MathSciNet  Google Scholar 

  14. Jakobsons, E.: Scenario aggregation method for portfolio expectile optimization. Stat. Risk Model. 33(1–2), 51–65 (2016)

    Article  MathSciNet  Google Scholar 

  15. Jin, H., Yan, J.-A., Zhou, X.Y.: Continuous-time mean-risk portfolio selection. Annales de l’Institut Henri Poincare (B) Probability and Statistics 41(3), 559–580 (2005)

    Article  MathSciNet  Google Scholar 

  16. Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance, vol. 39. Springer, New York (1998)

    Book  Google Scholar 

  17. Keating, C., Shadwick, W.F.: A universal performance measure. J. Perform. Meas. 6(3), 59–84 (2002)

    Google Scholar 

  18. Lin, H., Saunders, D., Weng, C.: Optimal investment strategies for participating contracts. Insurance 73, 137–155 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)

    Google Scholar 

  20. Markowitz, H.M., Todd, G.P., Sharpe, W.F.: Mean-Variance Analysis in Portfolio Choice and Capital Markets, vol. 66. Wiley, New York (2000)

    Google Scholar 

  21. Newey, W.K., Powell, J.L.: Asymmetric least squares estimation and testing. Econometrica 55, 819–847 (1987)

    Article  MathSciNet  Google Scholar 

  22. Osband, K.: Providing incentives for better cost forecasting. PhD thesis, University of California, Berkeley (1985)

  23. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)

    Article  Google Scholar 

  24. Sereda, E.N., Bronshtein, E.M., Rachev, S.T., Fabozzi, F.J., Sun, W., Stoyanov, S.V.: Distortion risk measures in portfolio optimization. In: Handbook of Portfolio Construction, pp. 649–673. Springer (2010)

  25. Zhou, X.Y., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42(1), 19–33 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Funding

D. Saunders and C. Weng gratefully acknowledge support from the National Sciences and Engineering Research Council of Canada in the form of Discovery Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Saunders.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Part (b) and Part (c) of Proposition 2

Proof of Part (b) and Part (c) of Proposition 2

In this appendix, we provide the proof of parts (b) and (c) of Proposition 2. The proof essentially consists of a series of lemmas adapted from Section 5 of Jin et al. [15], in which a similar result is shown.

Recall that \(0<x_{0}e^{rT} \le K < d\) is assumed for both parts (b) and (c). To proceed, we let \(Y := Z - d\) and \(y_{0} := x_{0} - de^{-rT} < 0\), so that the problem (16) can be equivalently cast as

(46)

where \(Y\in {\mathcal {F}}_{T}\) means that Y is \({\mathcal {F}}_{T}\) measurable. Consider the optimization problem that relaxes the constraint on \({\mathbb {E}}[Y]\).

(47)

The following lemma is due to Cvitanić and Karatzas [11].

Lemma 6

Assuming \(0<x_{0} \le Ke^{-rT}\) or equivalently \(y_{0}\in (-de^{-rT},Ke^{-rT} - de^{-rT}]\), an optimal solution to problem (47) is given by

$$\begin{aligned} Y^* = Z^*-d = K{\mathbf {1}}_{\{ \beta ^*\xi _{T}\le 1 \}} - d, \end{aligned}$$
(48)

where \(\beta ^* = \exp \left\{ \Vert \zeta \Vert \sqrt{T}\varPhi ^{-1}\left( 1 - \frac{y_{0}e^{rT}+d}{K} \right) + \left( r - \frac{1}{2}\Vert \zeta \Vert ^{2}\right) T \right\} \). The corresponding value function, denoted by \(h(y_{0})\), is

$$\begin{aligned} h(y_{0}) = K\varPhi \left( \varPhi ^{-1}\left( 1- \frac{y_{0}e^{rT}+d}{K}\right) - \Vert \zeta \Vert \sqrt{T} \right) . \end{aligned}$$
(49)

In Lemma 6, when \(x_{0} = Ke^{-rT}\), i.e. \(y_{0}e^{rT} + d = K\), we have \(\beta ^* = 0\), \(Y^* = K - d\) and \(h(y_0) = 0\), which means that the optimal solution to problem (47) is to invest only in the risk-free asset, and the optimal value is zero.

It is obvious that \(h(y_{0})\) is strictly decreasing with respect to \(y_{0}\in (-de^{-rT},Ke^{-rT} - de^{-rT}]\).

Lemma 7

For any sufficiently small \(\varepsilon >0\) and \(y_{0}\in (-de^{-rT},Ke^{-rT} - de^{-rT}]\), there exists a feasible solution Y to problem (47) such that \(h(y_{0})\le {\mathbb {E}}\left[ \left( K - d - Y\right) _{+}\right] = h(y_{0}) + \frac{\varepsilon }{2}\) and \({\mathbb {E}}\left[ \xi _{T}Y\right] = y_{0}\).

Proof

For any feasible solution Y of problem (47), \(h(y_{0})\le {\mathbb {E}}\left[ \left( K - d - Y\right) _{+}\right] \) by definition. Consider \(Y_{\varepsilon }\) defined as follows:

$$\begin{aligned} Y_{\varepsilon }&= \left( K - d - \frac{\varepsilon }{2b{\mathbb {E}}\left[ \xi _{T}{\mathbf {1}}_{\{ \beta ^*\xi _{T}\le 1 \}}\right] }\right) {\mathbf {1}}_{\{ \beta ^*\xi _{T}\le 1 \}} \nonumber \\&\quad + \left( \frac{\varepsilon }{2b{\mathbb {E}}\left[ \xi _{T}{\mathbf {1}}_{\{ \beta ^*\xi _{T}>1 \}}\right] } - d\right) {\mathbf {1}}_{\{ \beta ^*\xi _{T}> 1 \}}, \end{aligned}$$
(50)

where \(b = \frac{1}{{\mathbb {E}}\left[ \xi _{T} | \beta ^*\xi _{T} \le 1 \right] } - \frac{1}{{\mathbb {E}}\left[ \xi _{T} | \beta ^*\xi _{T} > 1 \right] }\ge 0\) and \(\beta ^*\) is given in Lemma 6. For \(\varepsilon >0\) small enough, \(Y_{\varepsilon }\ge -d\) a.s. It can be verified that \({\mathbb {E}}[\xi _{T} Y_{\varepsilon }] = y_{0}\) and

$$\begin{aligned} \begin{aligned} {\mathbb {E}}\left[ \left( K-d-Y_{\varepsilon }\right) _{+}\right]&= {\mathbb {E}}\left[ \left( K - \frac{\varepsilon }{2b{\mathbb {E}}\left[ \xi _{T}{\mathbf {1}}_{\{ \beta ^*\xi _{T}>1 \}}\right] }\right) {\mathbf {1}}_{\{ \beta ^*\xi _{T}> 1 \}}\right] \\&\quad + {\mathbb {E}}\left[ \frac{\varepsilon }{2b{\mathbb {E}}\left[ \xi _{T}{\mathbf {1}}_{\{ \beta ^*\xi _{T} \le 1 \}}\right] }{\mathbf {1}}_{\{ \beta ^*\xi _{T}\le 1 \}}\right] \\&=h(y_{0}) + \frac{\varepsilon }{2b}\left( \frac{{\mathbb {P}}(\beta ^*\xi _{T}\le 1)}{{\mathbb {E}}\left[ \xi _{T}{\mathbf {1}}_{\{\beta ^*\xi _{T} \le 1\}} \right] } - \frac{{\mathbb {P}}(\beta ^*\xi _{T}>1)}{{\mathbb {E}}\left[ \xi _{T}{\mathbf {1}}_{\{\beta ^*\xi _{T} > 1\}}\right] } \right) \\&= h(y_{0}) + \frac{\varepsilon }{2b}b = h(y_{0})+\frac{\varepsilon }{2}. \end{aligned} \end{aligned}$$

Therefore, \(Y_{\varepsilon }\) constructed in (50) meets the requirement. \(\square \)

The following is Lemma 5.2 in Jin et al. [15].

Lemma 8

For any \(\alpha >0\), \(\delta > 0\), and \(0< \beta <\alpha \delta \), there exists a bounded random variable \(\tilde{Y}\ge 0\) such that \({\mathbb {E}}[\tilde{Y}] = \alpha \), \({\mathbb {E}}[\xi _{T}\tilde{Y}] = \beta \) and \(\tilde{Y} = 0\) on the set \(\{ \xi _{T}\ge \delta \}\).

Lemma 9

For any sufficiently small \(\varepsilon >0\) and \(y_{0}\in (-de^{-rT},Ke^{-rT} - de^{-rT}]\), given the feasible solution \(Y_{\varepsilon }\) in (50) to problem (47) such that \(h(y_{0})\le {\mathbb {E}}\left[ \left( K - d - Y_{\varepsilon }\right) _{+}\right] = h(y_{0}) + \frac{\varepsilon }{2}\) and \({\mathbb {E}}\left[ \xi _{T}Y_{\varepsilon }\right] = y_{0}\), we have the following.

  1. (a)

    There exists a unique \(\delta _{0}(a)\) for any \(a\in (-de^{-rT}, y_{0}]\) such that

    $$\begin{aligned} {\mathbb {E}}\left[ \frac{a}{y_{0}}\xi _{T}Y_{\varepsilon }{\mathbf {1}}_{\{ \xi _{T}\ge \delta _{0}(a) \}}\right] = y_{0}. \end{aligned}$$
  2. (b)

    \(\lim \limits _{a\nearrow y_{0}}\delta _{0}(a) = 0\).

  3. (c)

    There exists a \(\delta _{1}(a)\) such that \(0<\delta _{1}(a)<\delta _{0}(a)\) and

    $$\begin{aligned} \frac{{\mathbb {E}}\left[ \frac{a}{y_{0}}Y_{\varepsilon }{\mathbf {1}}_{\{ \xi _{T}\ge \delta _{1}(a)\}}\right] }{{\mathbb {E}}\left[ \xi _{T}\frac{a}{y_{0}}Y_{\varepsilon } {\mathbf {1}}_{\{\xi _{T}\ge \delta _{1}(a)\}}\right] -y_{0}} > \frac{1}{\delta _{1}(a)}, \end{aligned}$$
  4. (d)

    \(\lim \limits _{a\nearrow y_{0}}\delta _{1}(a) = 0\).

Proof

  1. (a)

    From (50), notice that \({\mathbb {E}}\left[ \frac{a}{y_{0}}\xi _{T}Y_{\varepsilon }\right] =a\) and \(Y_{\varepsilon }\le 0\) a.s. for any sufficiently small \(\varepsilon >0\). Define \(X_{\beta } := \frac{a}{y_{0}}\xi _{T}Y_{\varepsilon }{\mathbf {1}}_{\{ \xi _{T}\ge \beta \}}\) and \(H(\beta ) := {\mathbb {E}}(X_{\beta })= {\mathbb {E}}\left[ \frac{a}{y_{0}}\xi _{T}Y_{\varepsilon }{\mathbf {1}}_{\{ \xi _{T}\ge \beta \}}\right] \) for \(\beta >0\). We observe that \(X_{\beta }\) increases in \(\beta \) and tends to 0 and \(\xi _{T}\frac{a}{y_{0}}Y_{\varepsilon }\) a.s. as \(\beta \) tends to \(\infty \) and 0 respectively. Furthermore, \(\left| X_{\beta '}\right| \le \left| \xi _{T}\frac{a}{y_{0}}Y_{\varepsilon }\right| \) for all \(\beta \), so the Dominated Convergence Theorem implies that \(H(\beta )\) is continuous on \((0,\infty )\) with \(\lim \limits _{\beta \rightarrow \infty }H(\beta ) = 0\) and \(\lim \limits _{\beta \rightarrow 0}H(\beta ) = a<0\). The existence of \(\delta _{0}(a)\) follows. Uniqueness follows from the strict monotonicity of H, since for \(\beta _{1}>\beta _{2}>0\), we have

    $$\begin{aligned} H(\beta _{1}) -H(\beta _{2})= & {} {\mathbb {E}}\left[ \frac{a}{y_{0}}\xi _{T}Y_{\varepsilon }{\mathbf {1}}_{\{ \xi _{T}\ge \beta _{1} \}}\right] - {\mathbb {E}}\left[ \frac{a}{y_{0}}\xi _{T}Y_{\varepsilon }{\mathbf {1}}_{\{ \xi _{T}\ge \beta _{2} \}}\right] \\= & {} {\mathbb {E}}\left[ \frac{a}{y_{0}}\xi _{T}(-Y_{\varepsilon }){\mathbf {1}}_{\{ \beta _{2}\le \xi _{T} < \beta _{1} \}}\right] >0. \end{aligned}$$
  2. (b)

    It is clear that \(\delta _{0}(y_{0}) = 0\). Continuity of \(\delta _{0}(a)\) follows from the continuity and strict monotonicity of H.

  3. (c)

    Define \(G(\lambda ) = {\mathbb {E}}\left[ \frac{a}{y_{0}}(-\lambda Y_{\varepsilon }){\mathbf {1}}_{\{ \xi _{T}\ge \lambda \}}\right] - \left( y_{0} - {\mathbb {E}}\left[ \xi _{T}\frac{a}{y_{0}}Y_{\varepsilon } {\mathbf {1}}_{\{\xi _{T}\ge \lambda \}}\right] \right) \) for \(\lambda \in (0, \delta _{0}(a))\). The continuity of \(G(\lambda )\) with respect to \(\lambda \) can be proved in the same way as in part (a). Both random variables inside the corresponding expectations are integrable, with magnitudes bounded by \(\left| \xi _{T}\frac{a}{y_{0}}Y_{\varepsilon }\right| \). Dominated Convergence then yields

    $$\begin{aligned} \begin{aligned} \lim \limits _{\lambda \nearrow \delta _{0}(a)}G(\lambda )&= {\mathbb {E}}\left[ \frac{a}{y_{0}} (-\delta _{0}(a) Y_{\varepsilon }){\mathbf {1}}_{\{ \xi _{T}\ge \delta _{0}(a)\}}\right] - \left( y_{0} - {\mathbb {E}}\left[ \xi _{T}\frac{a}{y_{0}}Y_{\varepsilon } {\mathbf {1}}_{\{\xi _{T}\ge \delta _{0}(a)\}}\right] \right) \\&= \delta _{0}(a) {\mathbb {E}}\left[ \frac{a}{y_{0}}(-Y_{\varepsilon }){\mathbf {1}}_{\{ \xi _{T}\ge \delta _{0}(a)\}}\right] > 0 \end{aligned} \end{aligned}$$

    where the second equality follows from part (a). The continuity of G implies that there exists a \(0<\delta _{1}(a)<\delta _{0}(a)\) such that \(G(\delta _{1}(a)) > 0\). Notice that for such a \(\delta _{1}(a)\), we can obtain that \(\delta _{1}(a) {\mathbb {E}}\left[ \frac{a}{y_{0}}(-Y_{\varepsilon }){\mathbf {1}}_{\{ \xi _{T}\ge \delta _{1}(a)\}}\right] > 0\) and \(y_{0} - {\mathbb {E}}\left[ \xi _{T}\frac{a}{y_{0}}Y_{\varepsilon } {\mathbf {1}}_{\{\xi _{T}\ge \delta _{1}(a)\}}\right] > 0\), where the latter inequality follows from strict monotonicity of H from part (a). The result follows by rearranging \(G(\delta _{1}(a))>0\).

  4. (d)

    With \(0<\delta _{1}(a)<\delta _{0}(a)\) and \(\lim \limits _{a\nearrow y_{0}}\delta _{0}(a) = 0\), the claim follows by Squeeze Theorem.

\(\square \)

Lemma 10

For any sufficiently small \(\varepsilon >0\) and \(y_{0}\in (-de^{-rT},Ke^{-rT} - de^{-rT}]\), there exists a feasible solution \(Y_{\varepsilon }^{*}\) to problem (46) such that \({\mathbb {E}}\left[ \left( K-d-Y_{\varepsilon }^{*}\right) _{+}\right] <h(y_{0}) + \varepsilon \).

Proof

Using Lemma 8, we define

$$\begin{aligned} {\bar{Y}}_{a} = \frac{a}{y_{0}} Y_{\varepsilon } {\mathbf {1}}_{\{\xi _{T}\ge \delta _{1}(a)\}} + \tilde{Y}_{a}{\mathbf {1}}_{\{\xi _{T}<\delta _{1}(a)\}} \end{aligned}$$
(51)

where \(Y_{\varepsilon }\) is defined in (50) and \(\tilde{Y}_{a}\ge 0\) a.s. is such that \(\tilde{Y}_{a}=0\) on the set \(\{\xi _{T}\ge \delta _{1}(a)\}\) and

$$\begin{aligned} \left\{ \begin{aligned} {\mathbb {E}}\left[ \tilde{Y}_{a}\right]&= {\mathbb {E}}\left[ \tilde{Y}_{a}{\mathbf {1}}_{\{\xi _{T}<\delta _{1}(a)\}}\right] = -{\mathbb {E}}\left[ \frac{a}{y_{0}}Y_{\varepsilon }{\mathbf {1}}_{\{ \xi _{T}\ge \delta _{1}(a)\}}\right]>0\\ {\mathbb {E}}\left[ \xi _{T}\tilde{Y}_{a}\right]&= {\mathbb {E}}\left[ \xi _{T}\tilde{Y}_{a}{\mathbf {1}}_{\{\xi _{T}<\delta _{1}(a)\}}\right] = y_{0} - {\mathbb {E}}\left[ \xi _{T}\frac{a}{y_{0}}Y_{\varepsilon } {\mathbf {1}}_{\{\xi _{T}\ge \delta _{1}(a)\}}\right] >0 \end{aligned} \right. \end{aligned}$$

where \(\delta _{1}(a)>0\) and the two inequalities follow from proof of part (c) in Lemma 9. Consequently, \({\mathbb {E}}\left[ Y_{a}\right] = 0\) and \({\mathbb {E}}\left[ \xi _{T}Y_{a}\right] = y_{0}\). For \({\bar{Y}}_{a}\), we have:

$$\begin{aligned} \begin{aligned} {\mathbb {E}}\left[ \left( K-d-{\bar{Y}}_{a}\right) _{+}\right]&= {\mathbb {E}}\left[ \left( K-d-\frac{a}{y_{0}} Y_{\varepsilon } \right) _{+} {\mathbf {1}}_{\{\xi _{T}\ge \delta _{1}(a)\}}\right] \\&\quad + {\mathbb {E}}\left[ \left( K-d-\tilde{Y}_{a}\right) _{+}{\mathbf {1}}_{\{\xi _{T}<\delta _{1}(a)\}}\right] \\&= {\mathbb {E}}\left[ \left( K-d-\frac{a}{y_{0}} Y_{\varepsilon } \right) _{+} {\mathbf {1}}_{\{\xi _{T}\ge \delta _{1}(a)\}}\right] . \end{aligned} \end{aligned}$$

since \(\tilde{Y}_{a}\ge 0\) a.s. Since \(\left| \left( K-d-\frac{a}{y_{0}} Y_{\varepsilon } \right) _{+} {\mathbf {1}}_{\{\xi _{T}\ge \delta _{1}(a)\}} \right| \le \left| K-d-\frac{a}{y_{0}}Y_{\varepsilon } \right| \le K + d + \frac{a}{y_{0}}|Y_{\varepsilon }|\) and \(|Y_{\varepsilon }|\) is integrable from (50), the Dominated Convergence Theorem implies:

$$\begin{aligned} \lim \limits _{a\nearrow y_{0}}{\mathbb {E}}\left[ \left( K-d-{\bar{Y}}_{a}\right) _{+}\right] = {\mathbb {E}}\left[ \left( K-d-Y_{\varepsilon }\right) _{+}\right] = h(y_{0})+\frac{\varepsilon }{2} \end{aligned}$$

where the second equality is due to the definition of \(Y_{\varepsilon }\) (50) in Proposition 7. Thus, we can find an \(a<y_{0}\) such that \({\mathbb {E}}\left[ \left( K-d-{\bar{Y}}_{a}\right) _{+}\right] <h(y_{0}) + \varepsilon \).

\(\square \)

Lemma 11

Given \(y_{0}<0\), for any feasible solution Y of (46), \({\mathbb {E}}\left[ \left( K-d-Y\right) _{+}\right] >h(y_{0})\).

Proof

Note that for any Y feasible for problem (46), \({\mathbb {E}}\left[ \xi _{T}Y_{+}\right] >0\), since otherwise \(Y_{+} = 0\) a.s., and then \({\mathbb {E}}[Y] = 0\) implies \(Y=0\) a.s., and thus \({\mathbb {E}}[\xi _{T}Y]=0 > y_{0}\), contradicting feasibility.

Let \(Y_{-}=\max (-Y,0)\). Then \(b:={\mathbb {E}}[\xi _{T}(-(Y_{-}))] \le y_{0} - {\mathbb {E}}[\xi _{T}Y_{+}] < y_{0}\), and \(-(Y_{-}) \ge -d\). Thus \({\tilde{Y}} := -(Y_{-})\) is a feasible solution to (47), and we have:

$$\begin{aligned} {\mathbb {E}}\left[ \left( K - d - Y\right) _{+}\right] \ge {\mathbb {E}}\left[ \left( K-d - \tilde{Y}\right) _{+}\right] \ge h(b)>h(y_{0}). \end{aligned}$$

using the fact that h is strictly decreasing by Lemma 6. \(\square \)

Lemmas 10 and 11 yield the claims in both part (b) and part (c) of Proposition 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Saunders, D. & Weng, C. Mean-Expectile Portfolio Selection. Appl Math Optim 83, 1585–1612 (2021). https://doi.org/10.1007/s00245-019-09601-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09601-1

Keywords

Navigation