Skip to main content
Log in

Exponential Stability of Solutions to Stochastic Differential Equations Driven by G-Lévy Process

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

In this paper, BDG-type inequality for G-stochastic calculus with respect to G-Lévy process is obtained, and solutions of the stochastic differential equations driven by the G-Lévy process under the non-Lipschitz condition are constructed. Furthermore, the mean square exponential stability and quasi-sure exponential stability of the solution using the G-Lyapunov function method is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, X., Lin, Y.: On the existence and uniqueness of solutions to stochastic differential equations driven by \(G\)-Brownian motion with integral-Lipschitz coefficients. Acta Math. Appl. Sin. Engl. Ser. 30, 589–610 (2014)

    Article  MathSciNet  Google Scholar 

  2. Denis, L., Hu, M., Peng, S.: Function spaces and capacity related to a sublinear expectation: application to \(G\)-Brownian motion paths. Potential Anal. 34, 139–161 (2011)

    Article  MathSciNet  Google Scholar 

  3. Fei, W., Fei, C.: Exponential stability for stochastic differential equations disturbed by \(G\)-Brownian motion (preprint). arXiv:1311.7311

  4. Gao, F.: Pathwise properties and homeomorphic flows for stochastic differential equations driven by \(G\)-Brownian motion. Stoch. Process. Appl. 119, 3356–3382 (2009)

    Article  MathSciNet  Google Scholar 

  5. Hu, M., Peng, S.: \(G\)-Lévy processes under sublinear expectations. arXiv:0911.3533v1

  6. Hu, L., Ren, Y., Xu, T.: \(p\)-Moment stability of solutions to stochastic differential equations driven by \(G\)-Brownian motion. Appl. Math. Comput. 230, 231–237 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Li, X., Peng, S.: Stopping times and related Itô’s calculus with \(G\)-Brownian motion. Stoch. Process. Appl. 121, 1492–1508 (2011)

    Article  Google Scholar 

  8. Liu, B.: Stability of solutions for stochastic impulsive systems via comparison approach. IEEE Trans. Autom. Control 53, 2128–2133 (2008)

    Article  MathSciNet  Google Scholar 

  9. Paczka, K.: Itô calculus and jump diffusions for \(G\)-Lévy processes. arXiv:1211.2973v3

  10. Paczka, K.: \(G\)-martingale representation in the \(G\)-Lévy setting. arXiv:1404.2121v1

  11. Peng, S.: Filtration consistent nonlinear expectations and evaluations of contingent claims. Acta Math. Appl. Sin. Engl. Ser. 20, 1–24 (2004)

    Article  MathSciNet  Google Scholar 

  12. Peng, S.: Nonlinear expectations and nonlinear Markov chains. Chin. Ann. Math. 26B, 159–184 (2005)

    Article  MathSciNet  Google Scholar 

  13. Peng, S.: \(G\)-Expectations, \(G\)-Brownian motion and related stochastic calculus of Itô’s type. In: Benth, F.E., et. al. (eds) Proceedings of the 2005 Abel Symposium, 3 January, pp. 541–567. Springer (2006)

  14. Peng, S.: Multi-dimensional \(G\)-Brownian motion and related stochastic calculus under \(G\)-expectation. Stoch. Process. Appl. 118, 2223–2253 (2008)

    Article  MathSciNet  Google Scholar 

  15. Peng, S.: Survey on normal distributions, central limit theorem. Brownian motion and the related stochastic calculus under sublinear expectation. Sci China A 52, 1391–1411 (2009)

    Article  MathSciNet  Google Scholar 

  16. Peng, S.: Nonlinear expectations and stochastic calculus under uncertainly (2010). arXiv:1002.4546v1

  17. Peng, S.: Backward stochastic differential equation, nonlinear expectation and their applications. In: Proceedings of the International Congress of Mathematicians, Hyderabad, India (2010)

  18. Peng, S., Jia, B.: Some criteria on \(p\)-moment stability of impulsive stochastic functional differential equations. Stat. Probab. Lett. 80, 1085–1092 (2010)

    Article  MathSciNet  Google Scholar 

  19. Peng, S., Song, Y., Zhang, J.: A complete representation theorem for \(G\)-martingales. Stochastics 86, 609–631 (2014)

    Article  MathSciNet  Google Scholar 

  20. Qiao, H.: The cocycle property of stochastic differential equations driven by \(G\)-Brownian motion. Chin. Ann. Math. B 36B, 147–160 (2015)

    Article  MathSciNet  Google Scholar 

  21. Ren, L.: On representation theorem of sublinear expectation related to \(G\)-Lévy processes and paths of \(G\)-Lévy processes. Stat. Probab. Lett. 83, 1301–1310 (2013)

    Article  Google Scholar 

  22. Ren, Y., Jia, X., Hu, L.: Exponential stability of solutions to impulsive stochastic differential equations driven by \(G\)-Brownian motion. Discrete Contin. Dyn. Syst. 7, 2157–2169 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Shen, L., Sun, J.: \(p\)-th moment exponential stability of stochastic differential equations with impulsive effect. Sci. China Inf. Sci. 54, 1702–1711 (2011)

    Article  MathSciNet  Google Scholar 

  24. Soner, M., Touzi, N., Zhang, J.: Martingale representation theorem for the \(G\)-expectation. Stoch. Process. Appl. 121, 265–287 (2011)

    Article  MathSciNet  Google Scholar 

  25. Wang, B., Yuan, M.: Existence of solution for stochastic differential equations driven by \(G\)-Lévy processes with discontinuous coefficients. Adv. Differ. Equ. 188, 1–13 (2017)

    Google Scholar 

  26. Wang, B., Yuan, M.: Forward–backward stochastic differential equations driven by \(G\)-Brownian motion. Appl. Math. Comput. 349, 39–47 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Wu, H., Sun, J.: \(p\)-Moment stability of stochastic differential equations with impulsive jump and Markovian switching. Autom. J. IFAC 42, 1753–1759 (2006)

    Article  MathSciNet  Google Scholar 

  28. Wu, S., Han, D., Meng, X.: \(p\)-Moment stability of stochastic functional differential equations with jumps. Appl. Math. Comput. 152, 505–519 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Wu, X., Yan, L., Zhang, W., Chen, L.: Exponential stability of impulsive stochastic delay differential systems. Discrete Dyn. Nat. Soc. Art. ID 296136 (2012)

  30. Zhang, D., Chen, Z.: Exponential stability for stochastic differential equations driven by \(G\)-Brownian motion. Appl. Math. Lett. 25, 1906–1910 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the reviewers comments concerning our manuscript. All the comments were found to be valuable and very helpful in improving our paper. This work was supported in part by an NSFC Grant No. 11531006, PAPD of Jiangsu Higher Education Institutions, and Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application. The Research Foundation of Jinling Institute of Technology (No. Jit-b-201836).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 2.3

First, let us consider the case:

$$\begin{aligned} K(r,z)(w)=\sum _{k=1}^{n-1}\sum _{l=1}^{m}F_{k,l}(w) {\mathbb {I}}_{]t_{k},t_{k+1}]}(r)\psi _{l}(z)\in H_{G}^{S}([0,T]\times R_{0}^{d}). \end{aligned}$$

For this case, the proof is similar to [9, Theorem 27]. However, for the sake of completeness, we present the prove as follows. Based on the definition of the Itô integral and Theorem 2.4, we have

$$\begin{aligned}&\hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left( \int _{0}^{t}\int _{R_{0}^{d}}K(r,z)L(dr,dz)\right) ^{2}\right] =\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}E^{P^{\theta }}\left[ \sup _{0\le t\le T}\left( \sum _{0\le r\le t}K(r,\triangle X_{r})\right) ^{2}\right] \nonumber \\&\quad =\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}E^{P^{\theta }}\nonumber \\&\quad \left[ \sup _{0\le t\le T}\left( \sum _{0\le r\le t}\sum _{k=1}^{n-1}\sum _{l=1}^{m}\phi _{k,l}\left( X_{t_{1}\wedge t},\ldots ,X_{t_{k}\wedge t}-X_{t_{k-1}\wedge t}\right) {\mathbb {I}}_{]t_{k}\wedge t,t_{k+1}\wedge t]}(r)\psi _{l}(\triangle X_{r})\right) ^{2}\right] \nonumber \\&\quad =\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}E^{P_{0}}\nonumber \\&\quad \left[ \sup _{0\le t\le T} \left( \sum _{0\le r\le t}\sum _{k=1}^{n-1}\sum _{l=1}^{m}\phi _{k,l}\left( B_{t_{1}\wedge t}^{0,\theta },\ldots ,B_{t_{k}\wedge t}^{t_{k-1}\wedge t,\theta }\right) {\mathbb {I}}_{]t_{k}\wedge t,t_{k+1}\wedge t]}(r)\psi _{l}\left( \triangle B_{r}^{0,\theta }\right) \right) ^{2}\right] \nonumber \\&\quad =\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}E^{P_{0}}\left[ \sup _{0\le t\le T}\left( \sum _{0\le r\le t}\sum _{k=1}^{n-1}\sum _{l=1}^{m}F_{k,l}^{\theta }{\mathbb {I}}_{]t_{k}\wedge t,t_{k+1}\wedge t]}(r)\psi _{l}(\theta ^{d}(r,\triangle N_{r}))\right) ^{2}\right] , \end{aligned}$$
(5.1)

where \(F_{k,l}^{\theta }:=\phi _{k,l}(B_{t_{1}\wedge t}^{0,\theta },\ldots ,B_{t_{k}\wedge t}^{t_{k-1}\wedge t,\theta })\) and \(N_{t}\) is the Poisson process in Theorem 2.4. We define a predictable process \(K^{\theta }(r,z)\) as

$$\begin{aligned} K^{\theta }(r,z):=\sum _{k=1}^{n-1}\sum _{l=1}^{m}F_{k,l}^{\theta }{\mathbb {I}}_{]t_{k}\wedge t,t_{k+1}\wedge t]}(r)\psi _{l}(\theta ^{d}(r,z)). \end{aligned}$$

We can then rewrite (5.1) as

$$\begin{aligned}&\hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left( \int _{0}^{t}\int _{R_{0}^{d}}K(r,z)L(dr,dz)\right) ^{2}\right] \nonumber \\&\quad =\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}E^{P_{0}}\left[ \sup _{0\le t\le T}\left( \int _{0}^{t}\int _{R_{0}^{d}}K^{\theta }(r,z)N(dr,dz)\right) ^{2}\right] \nonumber \\&\quad =\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}E^{P_{0}}\left[ \sup _{0\le t\le T}\left( \int _{0}^{t}\int _{R_{0}^{d}}K^{\theta }(r,z){\tilde{N}}(dr,dz) +\int _{0}^{t}\int _{R_{0}^{d}}K^{\theta }(r,z)\mu (dz)dr\right) ^{2}\right] , \end{aligned}$$
(5.2)

\(\square \)

where N(drdz) and \({\tilde{N}}(dr,dz)\) are respectively the Poisson random measure and compensated Poisson measure associated with the Lévy process with the Lévy triplet \((0,0,\mu ).\) Using the standard BDG inequality and Hölder inequality, we obtain

$$\begin{aligned}&\hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left( \int _{0}^{t}\int _{R_{0}^{d}}K(r,z)L(dr,dz)\right) ^{2}\right] \nonumber \\&\quad \le 2\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}E^{P_{0}}\left\{ \sup _{0\le t\le T}\left[ \left( \int _{0}^{t}\int _{R_{0}^{d}}K^{\theta }(r,z){\tilde{N}}(dr,dz)\right) ^{2}\right. \right. \nonumber \\&\qquad \left. \left. +\,\left( \int _{0}^{t}\int _{R_{0}^{d}}K^{\theta }(r,z)\mu (dz)dr\right) ^{2}\right] \right\} \nonumber \\&\quad \le 2\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}E^{P_{0}}\left\{ \sup _{0\le t\le T}\left[ \left( \int _{0}^{t}\int _{R_{0}^{d}}K^{\theta }(r,z){\tilde{N}}(dr,dz)\right) ^{2}\right. \right. \nonumber \\&\qquad \left. \left. +\, t\int _{0}^{t}\int _{R_{0}^{d}}(K^{\theta }(r,z))^{2}\mu (dz)dr\right] \right\} \nonumber \\&\quad \le 2\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}\left\{ E^{P_{0}}\sup _{0\le t\le T}\left( \int _{0}^{t}\int _{R_{0}^{d}}K^{\theta }(r,z){\tilde{N}}(dr,dz)\right) ^{2}\right. \nonumber \\&\qquad \left. +\,E^{P_{0}}T\int _{0}^{T}\int _{R_{0}^{d}}\left( K^{\theta }(r,z)\right) ^{2}\mu (dz)dr\right\} \nonumber \\&\quad \le 2\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}\left\{ {\tilde{C}}_{T}E^{P_{0}} \int _{0}^{T}\int _{R_{0}^{d}}(K^{\theta }(r,z))^{2}\mu (dz)dr\right. \nonumber \\&\qquad \left. +E^{P_{0}}T\int _{0}^{T}\int _{R_{0}^{d}}(K^{\theta }(r,z))^{2}\mu (dz)dr\right\} \nonumber \\&\quad =C_{T}\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}\int _{0}^{T} \int _{R_{0}^{d}}E^{P_{0}}\left( \sum _{k=1}^{n-1}\sum _{l=1}^{m}F_{k,l}^{\theta } {\mathbb {I}}_{]t_{k},t_{k+1}]}(r)\psi _{l}(\theta ^{d}(r,z))\right) ^{2}\mu (dz)dr, \end{aligned}$$
(5.3)

where \({\tilde{C}}_{T}\) is a constant that depends on T and \(C_{T}=2(T+{\tilde{C}}_{T}).\) It should be noted that the intervals \(]t_{k},t_{k+1}]\) are mutually disjoint, and hence,

$$\begin{aligned}&\hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left( \int _{0}^{t}\int _{R_{0}^{d}}K(r,z)L(dr,dz)\right) ^{2}\right] \nonumber \\&\quad \le C_{T}\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}\sum _{k=1}^{n-1}\sum _{l=1}^{m} \int _{t_{k}}^{t_{k+1}}E^{P_{0}}\left[ \left( F_{k,l}^{\theta }\right) ^{2}\int _{R_{0}^{d}} \psi _{l}^{2}\left( \theta ^{d}(r,z)\right) \mu (dz)\right] dr \nonumber \\&\quad = C_{T}\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}\sum _{k=1}^{n-1}\int _{t_{k}}^{t_{k+1}} E^{P_{0}}\left[ \sum _{l=1}^{m}\phi _{k,l}^{2}\left( B_{t_{1}}^{0,\theta },\ldots , B_{t_{k}}^{t_{k-1},\theta }\right) \int _{R_{0}^{d}}\psi _{l}^{2}(\theta ^{d}(r,z))\mu (dz)\right] dr .\end{aligned}$$
(5.4)

Based on the assumptions on the process \(\theta ^{d},\) we know that for a.a. w and a.e. r function \(z\rightarrow \theta ^{d}(r,z)(w)\) is equal to \(g_{v}\) for \(v\in {\mathcal {V}}.\) Hence, we can transform (5.4) to obtain

$$\begin{aligned}&\hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left( \int _{0}^{t}\int _{R_{0}^{d}}K(r,z)L(dr,dz)\right) ^{2}\right] \nonumber \\&\quad \le C_{T}\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}\sum _{k=1}^{n-1}\int _{t_{k}}^{t_{k+1}} E^{P_{0}}\left[ \sum _{l=1}^{m}\phi _{k,l}^{2}\left( B_{t_{1}}^{0,\theta }, \ldots ,B_{t_{k}}^{t_{k-1},\theta }\right) \int _{R_{0}^{d}}\psi _{l}^{2}(z)v(dz)\right] dr \nonumber \\&\quad \le C_{T}\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}E^{P_{0}} \left[ \sum _{k=1}^{n-1}\int _{t_{k}}^{t_{k+1}}\sup _{v\in {\mathcal {V}}}\sum _{l=1}^{m} \phi _{k,l}^{2}\left( B_{t_{1}}^{0,\theta },\ldots ,B_{t_{k}}^{t_{k-1},\theta }\right) \int _{R_{0}^{d}}\psi _{l}^{2}(z)v(dz)dr\right] \nonumber \\&\quad \le C_{T}\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}E^{P_{0}} \left[ \int _{0}^{T}\sup _{v\in {\mathcal {V}}}\int _{R_{0}^{d}}\sum _{k=1}^{n-1}\sum _{l=1}^{m} \phi _{k,l}^{2}\left( B_{t_{1}}^{0,\theta },\ldots ,B_{t_{k}}^{t_{k-1},\theta }\right) {\mathbb {I}}_{]t_{k},t_{k+1}]}(r)\psi _{l}^{2}(z)v(dz)dr\right] \nonumber \\&\quad = C_{T}\hat{{\mathbb {E}}}\left[ \int _{0}^{T}\sup _{v\in {\mathcal {V}}}\int _{R_{0}^{d}} K^{2}(r,z)v(dz)dr\right] . \end{aligned}$$
(5.5)

For general \(K(r,z)\in H_{G}^{2}([0,T]\times R_{0}^{d}),\) we choose \(\{K^{n},n\ge 1\} \subset H_{G}^{S}([0,T]\times R_{0}^{d}),\) such that

$$\begin{aligned} \Vert K-K^{n}\Vert _{H_{G}^{2}([0,T] \times R_{0}^{d})}\rightarrow 0 \quad as \quad n\rightarrow \infty . \end{aligned}$$

We set \(Y_{t}^{n}=\int _{0}^{t}\int _{R_{0}^{d}}K^{n}(r,z)L(dr,dz).\) Then, as \(n,m\rightarrow \infty ,\)

$$\begin{aligned} \hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left( Y_{t}^{n}-Y_{t}^{m}\right) ^{2}\right] \le C_{T}\Vert K^{n}-K^{m}\Vert ^{2}_{H_{G}^{2}([0,T] \times R_{0}^{d})}\rightarrow 0, \end{aligned}$$

and thus, there exists a subsequence \(\{Y_{t}^{n_{k}},k\ge 1\},\) such that for any \(k\ge 1,\)

$$\begin{aligned} \left( \hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left( Y_{t}^{n_{k+1}}-Y_{t}^{n_{k}}\right) ^{2}\right] \right) ^{\frac{1}{2}}\le \frac{1}{2^{k}}. \end{aligned}$$

Then

$$\begin{aligned}&\left( \hat{{\mathbb {E}}}\left[ \sum _{k=1}^{\infty }\sup _{0\le t\le T}\left( Y_{t}^{n_{k+1}}-Y_{t}^{n_{k}}\right) \right] ^{2}\right) ^{\frac{1}{2}}=\sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}\left( E^{P^{\theta }}\left( \sum _{k=1}^{\infty }\sup _{0\le t\le T}\left( Y_{t}^{n_{k+1}}-Y_{t}^{n_{k}}\right) \right) ^{2}\right) ^{\frac{1}{2}}\nonumber \\&\quad \le \sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}\sum _{k=1}^{\infty }\left( E^{P^{\theta }}\left( \sup _{0\le t\le T}\left( Y_{t}^{n_{k+1}}-Y_{t}^{n_{k}}\right) \right) ^{2}\right) ^{\frac{1}{2}}\le \sum _{k=1}^{\infty }\left( \hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left( Y_{t}^{n_{k+1}}-Y_{t}^{n_{k}}\right) ^{2}\right] \right) ^{\frac{1}{2}}\nonumber \\&\quad \le 1, \end{aligned}$$
(5.6)

which implies that

$$\begin{aligned} \sum _{k=1}^{\infty }\sup _{0\le t\le T}\left| Y_{t}^{n_{k+1}}-Y_{t}^{n_{k}}\right| < \infty , \; q.s. \end{aligned}$$

If we set \({\tilde{Y}}_{t}=Y_{t}^{n_{1}}+\sum _{k=1}^{\infty }(Y_{t}^{n_{k+1}}-Y_{t}^{n_{k}}),\) then \({\tilde{Y}}_{t}\) is q.s. defined on \(\Omega \) for all \(t\in [0,T]\) and for q.s. w\(t\rightarrow {\tilde{Y}}_{t}(w)\) is càdlàg. Moreover, \((\hat{{\mathbb {E}}}[\sup _{0\le t\le T}{\tilde{Y}}_{t}^{2}])^{\frac{1}{2}}<\infty ,\) and

$$\begin{aligned}&\left( \hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left| Y_{t}^{n_{k}}-{\tilde{Y}}_{t}\right| ^{2}\right] \right) ^{\frac{1}{2}} \le \left( \hat{{\mathbb {E}}}\left( \sum _{l=k}^{\infty }\sup _{0\le t\le T}\left| Y_{t}^{n_{l+1}}-Y_{t}^{n_{l}}\right| \right) ^{2}\right) ^{\frac{1}{2}}\nonumber \\&\quad \le \sup _{\theta \in {\mathcal {A}}_{0,T}^{{\mathcal {U}}}}\left( E^{P^{\theta }}\left( \sum _{l=k}^{\infty }\sup _{0\le t\le T}\left| Y_{t}^{n_{l+1}}-Y_{t}^{n_{l}}\right| \right) ^{2}\right) ^{\frac{1}{2}}\nonumber \\&\quad \le \sum _{l=k}^{\infty }\left( \hat{{\mathbb {E}}}\sup _{0\le t\le T}\left| Y_{t}^{n_{l+1}}-Y_{t}^{n_{l}}\right| ^{2}\right) ^{\frac{1}{2}}\rightarrow 0\quad as \; k\rightarrow \infty . \end{aligned}$$
(5.7)

Moreover, by using \(\Vert K-K^{n_{k}}\Vert _{H_{G}^{2}([0,T] \times R_{0}^{d})}\rightarrow 0,\) we have

$$\begin{aligned}&\left| \left( \hat{{\mathbb {E}}}\left[ \int _{0}^{T}\sup _{v\in {\mathcal {V}}}\int _{R_{0}^{d}}K^{2}(r,z)v(dz)dr\right] \right) ^{\frac{1}{2}} -\left( \hat{{\mathbb {E}}}\left[ \int _{0}^{T}\sup _{v\in {\mathcal {V}}}\int _{R_{0}^{d}}\left| K^{n_{k}}(r,z)\right| ^{2}v(dz)dr\right] \right) ^{\frac{1}{2}}\right| \nonumber \\&\quad \le \left\{ \hat{{\mathbb {E}}}\left[ \left( \int _{0}^{T}\sup _{v\in {\mathcal {V}}} \int _{R_{0}^{d}}K^{2}(r,z)v(dz)dr\right) ^{\frac{1}{2}}-\left( \int _{0}^{T}\sup _{v\in {\mathcal {V}}}\int _{R_{0}^{d}}|K^{n_{k}}(r,z)|^{2} v(dz)dr\right) ^{\frac{1}{2}}\right] ^{2}\right\} ^{\frac{1}{2}}\nonumber \\&\quad \le \left( \hat{{\mathbb {E}}}\left[ \int _{0}^{T}\sup _{v\in {\mathcal {V}}}\int _{R_{0}^{d}}\left| K(r,z)-K^{n_{k}}(r,z)\right| ^{2}v(dz)dr\right] \right) ^{\frac{1}{2}} \rightarrow 0 \end{aligned}$$
(5.8)

as \(k\rightarrow \infty .\) Then, on combining (5.5)–(5.8), we obtain

$$\begin{aligned}&\hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left| {\tilde{Y}}_{t}\right| ^{2}\right] \le \hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left| {\tilde{Y}}_{t}-Y_{t}^{n_{k}}\right| ^{2}\right] +\hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}\left| Y_{t}^{n_{k}}\right| ^{2}\right] \nonumber \\&\quad \le C_{T}\hat{{\mathbb {E}}}\left[ \int _{0}^{T}\sup _{v\in {\mathcal {V}}}\int _{R_{0}^{d}}K^{2}(r,z)v(dz)dr\right] . \end{aligned}$$
(5.9)

Finally, as for any \(t\in [0,T],\) \(\hat{{\mathbb {E}}}[|Y_{t}^{n_{k}}-Y_{t}|^{2}]\rightarrow 0,\) we have \(\hat{{\mathbb {E}}}[|Y_{t}-{\tilde{Y}}_{t}|^{2}]= 0,\) and thus, \({\tilde{Y}}\) is a càdlàg modification of Y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Gao, H. Exponential Stability of Solutions to Stochastic Differential Equations Driven by G-Lévy Process. Appl Math Optim 83, 1191–1218 (2021). https://doi.org/10.1007/s00245-019-09583-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-019-09583-0

Keywords

Mathematics Subject Classification

Navigation