Skip to main content
Log in

Determine a Magnetic Schrödinger Operator with a Bounded Magnetic Potential from Partial Data in a Slab

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We study an inverse boundary value problem with partial data in an infinite slab in \(\mathbb {R}^{n}\), \(n\ge 3\), for the magnetic Schrödinger operator with bounded magnetic potential and electric potential. We show that the magnetic field and the electric potential can be uniquely determined, when the Dirichlet and Neumann data are given on either different boundary hyperplanes or on the same boundary hyperplanes of the slab. These generalize the results in Krupchyk et al. (Commun Math Phys 312:87–126, 2012), where the same uniqueness results were established when the magnetic potential is Lipschitz continuous. The proof is based on the complex geometric optics solutions constructed in Krupchyk and Uhlmann (Commun Math Phys 327:993–1009, 2014), which are special solutions to the magnetic Schrödinger equation with \(L^{\infty }\) magnetic and electric potentials in a bounded domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ahluwalia, D., Keller, J.: Exact and asymptotic representations of the sound field in s stratified ocean. Wave propagation and underwater acoustics, Lecture Notes in Phys., vol. 70, pp. 14–85. Springer, Berlin (1977)

  2. Amelinckx, S., van Dyck, D., van Landuyt, J., van Tendeloo, G.: Electron Microscopy: Principles and Fundamentals. Wiley-VCH, Weinheim (1997)

    Book  Google Scholar 

  3. Arridge, S.: Optical tomography in medical imaging. Inverse Probl. 15, R41 (1999)

    Article  MathSciNet  Google Scholar 

  4. Chen, C.J.: Introduction to Scanning Tunneling Microscopy, Oxford Series in Optical & Medical Sciences. Oxford Univ. Press, Oxford (1993)

    Google Scholar 

  5. Chung, F.: A partial data result for the magnetic Schrödinger inverse problem. Anal. PDE 7, 117–157 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chung, F.: Determining a magnetic potential from partial Neumann-to-Dirichlet data. Inverse Probl. Imaging 8, 959–989 (2014)

    Article  MathSciNet  Google Scholar 

  7. Cristofol, M., Gaitan, P., Iftimie, V.: Inverse problems for the Schrödinger operator in a layer. Rev. Roumaine Math. Pures Appl. 50(2), 153–180 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Dos Santos Ferreira, D., Kenig, C.E., Sjöstrand, J., Uhlmann, G.: Determining a magnetic Schrödinger operator from partial Cauchy data. Commun. Math. Phys. 271, 467–488 (2007)

    Article  Google Scholar 

  9. Dos Santos Ferreira, D., Kenig, C., Salo, M., Uhlmann, G.: Limiting Carleman weights and anisotropic inverse problems. Invent. Math. 178(1), 119–171 (2009)

    Article  MathSciNet  Google Scholar 

  10. Fanelli, D., Öktem, O.: Electron tomography: a short overview with an emphasis on the absorption potential model for the forward problem. Inverse Probl. 24, 013001 (2008)

    Article  MathSciNet  Google Scholar 

  11. Grubb, G.: Distributions and Operators, Volume 252 of Graduate Texts in Mathematics, vol. 252. Springer, New York (2009)

    Google Scholar 

  12. Haberman, B.: Unique determination of a magnetic Schrödinger operator with unbounded magnetic potential from boundary data. Int. Math. Res. Not. 4, 1080–1128 (2018)

    MATH  Google Scholar 

  13. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Classics in Mathematics. Springer, Berlin (2003)

    MATH  Google Scholar 

  14. Ikehata, M.: Inverse conductivity problem in the infinite slab. Inverse Probl. 17, 437–454 (2001)

    Article  MathSciNet  Google Scholar 

  15. Isakov, V.: On uniqueness in the inverse conductivity problem with local data. Inverse Probl. Imaging. 1(1), 95–105 (2007)

    Article  MathSciNet  Google Scholar 

  16. Kenig, C.E., Sjöstrand, J., Uhlmann, G.: The Calderón problem with partial data. Ann. Math. 165, 567–591 (2007)

    Article  MathSciNet  Google Scholar 

  17. Krupchyk, K., Lassas, M., Uhlmann, G.: Inverse problems with partial data for a magnetic Schrödinger operator in an infinite slab and on a bounded domain. Commun. Math. Phys. 312, 87–126 (2012)

    Article  Google Scholar 

  18. Krupchyk, K., Lassas, M., Uhlmann, G.: Determining a first order perturbation of the biharmonic operator by partial boundary measurements. J. Funct. Anal. 262, 1781–1801 (2012)

    Article  MathSciNet  Google Scholar 

  19. Krupchyk, K., Lassas, M., Uhlmann, G.: Inverse boundary value problems for the perturbed polyharmonic operator. Trans. Am. Math. Soc. 366, 95–112 (2014)

    Article  MathSciNet  Google Scholar 

  20. Krupchyk, K., Uhlmann, G.: Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential. Commun. Math. Phys. 327, 993–1009 (2014)

    Article  Google Scholar 

  21. Li, X., Uhlmann, G.: Inverse problems with partial data in a slab. Inverse Probl. Imaging 4(3), 449–462 (2010)

    Article  MathSciNet  Google Scholar 

  22. Nakamura, G., Sun, Z., Uhlmann, G.: Global identifiability for an inverse problem for the Schrödigner equation in a magnetic field. Math. Ann. 303(3), 377–388 (1995)

    Article  MathSciNet  Google Scholar 

  23. Panchenko, A.: An inverse problem for the magnetic Schrödinger equation and quasi-exponential solutions of nonsmooth partial differential equations. Inverse Probl. 18(5), 1421–1434 (2002)

    Article  Google Scholar 

  24. Salo, M.: Inverse problems for nonsmooth first order pertrbations of the Laplacian. Ann. Acad. Sci. Fenn. Math. Diss. 139 (2004)

  25. Salo, M.: Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field. Commun. PDE 31, 1639–1666 (2006)

    Article  MathSciNet  Google Scholar 

  26. Salo, M., Tzou, L.: Carleman estimates and inverse problems for Dirac operators. Math. Ann. 344(1), 161–184 (2009)

    Article  MathSciNet  Google Scholar 

  27. Salo, M., Wang, J.-N.: Complex spherical waves and inverse problems in unbounded domains. Inverse Probl. 22, 2299–2309 (2006)

    Article  MathSciNet  Google Scholar 

  28. Sun, Z.: An inverse boundary value problem for Schrödinger oeprators with vector potentials. Trans. Am. Math. Soc. 338(2), 953–969 (1993)

    MATH  Google Scholar 

  29. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987)

    Article  MathSciNet  Google Scholar 

  30. Tolmasky, C.: Exponentially growing solutions for nonsmooth first-order perturbations of the Laplacian. SIAM J. Math. Anal. 29(1), 116–133 (1998)

    Article  MathSciNet  Google Scholar 

  31. Triggiani, R.: Unique continuation from an arbitrary interior subdomain of the variable-coefficient Oseen equation. Nonlinear Anal. 71(10), 4967–4976 (2009)

    Article  MathSciNet  Google Scholar 

  32. Tzou, L.: Stability estimates for coefficients of magntic Schrödinger equation from full and partial measurements. Commun. Partial Differ. Equ. 33, 1911–1952 (2008)

    Article  MathSciNet  Google Scholar 

  33. Yang, Y.: Determining the first order perturbation of a bi-harmonic operator on bounded and unbounded domains from partial data. J. Differ. Equ. 257, 3607–3639 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Katya Krupchyk for pointing out an error in the previous draft. The research of the first author was partly supported by a Clemson Support for Early Exploration and Development (CU SEED) Grant. The research of the second author was partly supported by NSF Grant DMS-1715178, an AMS-Simons travel Grant, and a start-up fund from Michigan State University. The authors would also like to thank the referee for many useful suggestions that result a better presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shitao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yang, Y. Determine a Magnetic Schrödinger Operator with a Bounded Magnetic Potential from Partial Data in a Slab. Appl Math Optim 83, 277–296 (2021). https://doi.org/10.1007/s00245-018-9537-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9537-2

Keywords

Navigation