Skip to main content
Log in

Homogenization of an Elliptic Equation in a Domain with Oscillating Boundary with Non-homogeneous Non-linear Boundary Conditions

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

While considering boundary value problems with oscillating coefficients or in oscillating domains, it is important to associate an asymptotic model which accounts for the average behaviour. This model permits to obtain the average behaviour without costly numerical computations implied by the fine scale of oscillations in the original model. The asymptotic analysis of boundary value problems in oscillating domains has been extensively studied and involves some key issues such as: finding uniformly bounded extension operators for function spaces on oscillating domains, the choice of suitable sequences of test functions for passing to the limit in the variational formulation of the model equations etc. In this article, we study a boundary value problem for the Laplacian in a domain, a part of whose boundary is highly oscillating (periodically), involving non-homogeneous non-linear Neumann or Robin boundary condition on the periodically oscillating boundary. The non-homogeneous Neumann condition or the Robin boundary condition on the oscillating boundary adds a further difficulty to the limit analysis since it involves taking the limits of surface integrals where the surface changes with respect to the parameter. Previously, some model problems have been studied successfully in Gaudiello (Ricerche Mat 43(2):239–292, 1994) and in Mel’nyk (Math Methods Appl Sci 31(9):1005–1027, 2008) by converting the surface term into a volume term using auxiliary boundary value problems. Some problems of this nature have also been studied using an extension of the notion of two-scale convergence (Allaire et al. in Proceedings of the international conference on mathematical modelling of flow through porous media, Singapore, 15–25, 1996, Neuss-Radu in C R Acad Sci Paris Sr I Math 322:899–904, 1996). In this article, we use a different approach to handle of such terms based on the unfolding operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Achdou, Y., Pironneau, O., Valentin, F.: Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147(1), 187–218 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Aiyappan, S., Nandakumaran, A. K., Prakash, R.: Generalization of unfolding operator for highly oscillatory smooth boundary domains and homogenization. Calc. Var. Partial. Differ. Equ. (to appear)

  3. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Allaire, G., Damlamian, A., Hornung, U.: Two-scale convergence on periodic surfaces and applications. In: Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, World Scientific Publication, Singapore , pp. 15–25 (1996)

  5. Amirat, Y., Bodart, O., De Maio, U., Gaudiello, A.: Asymptotic approximation of the solution of the Laplace equation in a domain with highly oscillating boundary. SIAM J. Math. Anal 35(no. 6), 1598–1616 (2004). (electronic)

    MathSciNet  MATH  Google Scholar 

  6. Amirat, Y., Bodart, O., De Maio, U., Gaudiello, A.: Effective boundary condition for Stokes flow over a very rough surface. J. Differ. Equ. 254(8), 3395–3430 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Arrieta, J.M., Bruschi, S.M.: Rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a Lipschitz deformation. Math. Models Methods Appl. Sci. 17(10), 1555–1585 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Arrieta, J.M., Villanueva-Pesqueira, M.: Unfolding operator method for thin domains with a locally periodic highly oscillatory boundary. SIAM J. Math. Anal. 48(3), 1534–1671 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  11. Blanchard, D., Carbone, L., Gaudiello, A.: Homogenization of a monotone problem in a domain with oscillating boundary. Mathe. Model. Numer. Anal. 33(5), 1057–70 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Bonder, J.F., Orive, R., Rossi, J.D.: The best Sobolev trace constant in a domain with oscillating boundary. Nonlinear Anal. 67(4), 1173–1180 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Bourgeat, A., Marusic-Paloka, E., Mikelic, A.: Effective fluid flow in a porous medium containing a thin fissure. Asymptotic Anal. 11(3), 241–262 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Brizzi, R., Chalot, J.-P.: Homogénéisation de frontière. Université de Nice, Thèse d’Etat (1978)

  15. Brizzi, R., Chalot, J.-P.: Boundary homogenization and neumann boundary value problem. Ricerche Mat. 46(2), 341–387 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Bucur, D., Feireisl, E., Nečasová, Šárka, Wolf, J.: On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries. J. Differ. Equ. 244(11), 2890–2908 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Chechkin, G.-A., Friedman, A., Piatnitski, A.-L.: The boundary value problem in a domain with very rapidly oscillating boundary. J. Math. Anal. Appl. 231, 213–234 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. C.R. Math. 335(1), 99104 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal 40(4), 15851620 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  21. Cioranescu, D., Paulin, J.Saint Jean: Homogenization in open sets with holes. J. Math. Anal. Appl. 71, 590–607 (1979)

    MathSciNet  MATH  Google Scholar 

  22. Damlamian, A., Pettersson, K.: Am. Inst. Math. Sci. Homogenization of oscillating boundaries. Discrete and continuous dynamical systems 23(1), 197219 (2009)

    Google Scholar 

  23. De Maio, U., Mel’nyk, T.A.: Homogenization of the neumann problem in thick multi-structures of type \(3:2:2\). Math. Methods Appl. Sci. 28(9), 865–879 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Esposito, A.C., Donato, P., Gaudiello, A., Picard, C.: Homogenization of the p-laplacian in a domain with oscillating boundary. Comm. Appl. Nonlinear Anal. 4(4), 1–23 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Gaudiello, A.: Asymptotic behavior of non-homogeneous Neumann problems in domains with oscillating boundary. Ricerche Mat. 43(2), 239–292 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Jikov, V.V., Kozlov, S.M., Oleĭnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994)

    Google Scholar 

  27. Kotliarov, V.P., Khruslov, E.Ya.: On a limit boundary condition of some neumann problem. Theor. Funkts. 10, 83–96 (1970)

    Google Scholar 

  28. Krantz, S.G., Parks, H.R.: Geometric Integration Theory. Springer, Boston (2008)

    MATH  Google Scholar 

  29. MeI’nyk, T .A.: Homogenization of a boundary-value problem with a nonlinear boundary condition in a thick junction of type \(3:2:1\). Math. Methods Appl. Sci. 31(9), 1005–1027 (2008). MR 2419087

    MathSciNet  Google Scholar 

  30. Mel’nyk, T.A.: Asymptotic approximation for the solution to a semi-linear parabolic problem in a thick junction with the branched structure. J. Math. Anal. Appl. 424(2), 1237–1260 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Mel’nyk, T.A., Nazarov, S.A.: Asymptotic structure of the spectrum of the neumann problem in a thin comb-like domain. CR Acad. Sci. 319, 1343–1348 (1994)

    MathSciNet  MATH  Google Scholar 

  32. Murat, F., Sili, Ali: Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétérogènes, (french) [monotonic problems in heterogeneous cylinders with vanishing diameter]. C. R. Acad. Sci. Paris Sr. I Math 320(10), 1199–1204 (1995)

    MATH  Google Scholar 

  33. Nandakumaran, A.K., Prakash, Ravi, Sardar, B.C.: Homogenization of an optimal control problem in a domain with highly oscillating boundary using periodic unfolding method. Math. Eng. Sci. Aerosp. 4(3), 281–303 (2013)

    MATH  Google Scholar 

  34. Nazarov, S.A.: Junctions of singularly degenerating domains with different limit dimensions. Trudy Seminara imeni I. G. Petrovskogo 18, 3–79 (1995)

    Google Scholar 

  35. Neuss-Radu, M.: Some extensions of two-scale convergence. C. R. Acad. Sci. Paris Sr. I Math. 322(9), 899–904 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608–623 (1989)

    MathSciNet  MATH  Google Scholar 

  37. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  38. Suzikov, G.V., Khruslov, E.Y.: On advancing sound waves through narrow channels in a reflecting layer. Theor. Funkts. 5, 35–49 (1967)

    Google Scholar 

  39. Vanninathan, M.: Sur quelques problèmes de homogénéisation dans les équations aux dérivées partielles. Univérsité Pierre et Marie Curie, Thèse d’Etat (1979)

  40. Vanninathan, M.: Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. 90(3), 239–271 (1981)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the financial support of CONICYT-CHILE through the grant FONDECYT 1130595. The work was partially supported by the project (No. SR/S4/MS: 855/13 dtd 17.10.14) and the second author would like to acknowledge the support of Department of Science Technology (DST), India for the project. The third author wishes to thank CONICYT for the financial support through FONDECYT POSTDOCTORADO NO. 3140138. He would also like to thank the Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción (Chile) for their financial support through PROYECTOS VRID INICIACIÓN NO. 216.013.0.41-1.0IN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Mahadevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahadevan, R., Nandakumaran, A.K. & Prakash, R. Homogenization of an Elliptic Equation in a Domain with Oscillating Boundary with Non-homogeneous Non-linear Boundary Conditions. Appl Math Optim 82, 245–278 (2020). https://doi.org/10.1007/s00245-018-9499-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9499-4

Keywords

Mathematics Subject Classification

Navigation