Skip to main content
Log in

Small-Time Asymptotics for Gaussian Self-Similar Stochastic Volatility Models

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We consider the class of Gaussian self-similar stochastic volatility models, and characterize the small-time (near-maturity) asymptotic behavior of the corresponding asset price density, the call and put pricing functions, and the implied volatility. Away from the money, we express the asymptotics explicitly using the volatility process’ self-similarity parameter H, and its Karhunen–Loève characteristics. Several model-free estimators for H result. At the money, a separate study is required: the asymptotics for small time depend instead on the integrated variance’s moments of orders \(\frac{1}{2}\) and \( \frac{3}{2}\), and the estimator for H sees an affine adjustment, while remaining model-free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington, DC (1972)

    Google Scholar 

  2. Alexanderian, A.: A Brief Note on the Karhunen-Loève Expansion. Technical Note. https://users.ices.utexas.edu/~alen/articles/KL.pdf (2015). Accessed 23 Apr 2018

  3. Alòs, E., Léon, J., Vives, J.: On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11, 571–589 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Armstrong, J., Forde, M., Lorig, M., Zhang, H.: Small-time asymptotics under local-stochastic volatility with a jump-to-default: curvature and the heat kernel expansion. arXiv:1312.2281 (2013)

  5. Bardina, X., Es-Sebaiy, Kh: An extension of bifractional Brownian motion. Commun. Stoch. Anal. 5(2), 333–340 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility. http://ssrn.com/abstract=2554754 (2015). Accessed 23 Apr 2018

  7. Berestycki, H., Busca, J., Florent, I.: Computing the implied volatility in stochastic volatility models. Comm. Pure Appl. Math. 57, 1352–1373 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Bergomi, L.: Stochastic Volatility Modeling. Chapman & Hall/CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  9. Bojdecki, T., Gorostiza, L.G., Talarczyk, A.: Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems. Electron. Commun. Probab. 12, 161–172 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Caravenna, F., Corbetta, J.: General smile asymptotics with bounded maturity. arXiv:1411.1624v1 (2014)

  11. Chronopoulou, A., Viens, F.: Stochastic volatility models with long-memory in discrete and continuous time. Quant. Financ. 12, 635–649 (2012)

    MATH  Google Scholar 

  12. Comte, F., Renault, E.: Long memory in continuous-time stochastic volatility models. Math. Financ. 8, 291–323 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Comte, F., Coutin, L., Renault, E.: Affine fractional stochastic volatility models. Ann. Financ. 8, 337–378 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Corlay, S.: Quelques aspects de la quantification optimale, et applications en finance (in English, with French summary). PhD thesis, Université Pierre et Marie Curie (2011)

  15. Corlay, S.: The Nyström method for functional quantization with an application to the fractional Brownian motion. hal-00515488, version 1 (2010)

  16. Corlay, S.: Properties of the Ornstein-Uhlenbeck bridge. https://hal.archives-ouvertes.fr/hal-00875342v4 (2014). Accessed 23 Apr 2018

  17. Corlay, S., Pagès, G.: Functional quantization-based stratified sampling methods. https://hal.archives-ouvertes.fr/hal-00464088v3 (2014). Accessed 23 Apr 2018

  18. Daniluk, A., Muchorski, R.: The approximation of bonds and swaptions prices in a Black-Karasinski model based on the Karhunen-Loève expansion. In: 6th General AMaMeF and Banach Center Conference (2013)

  19. Deheuvels, P., Martynov, G.: A Karhunen-Loève decomposition of a Gaussian process generated by independent pairs of exponential random variables. J. Funct. Anal. 255, 23263–2394 (2008)

    MATH  Google Scholar 

  20. Deuschel, J.-D., Friz, P.K., Jacquier, A., Violante, S.: Marginal density expansions for diffusions and stochastic volatility I: Theoretical foundations. Commun. Pure Appl. Math. 67, 40–82 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Deuschel, J.-D., Friz, P.K., Jacquier, A., Violante, S.: Marginal density expansions for diffusions and stochastic volatility I: Applications. Commun. Pure Appl. Math. 67, 321–350 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  23. Feng, J., Forde, M., Fouque, J.-P.: Short-maturity asymptotics for a fast mean-reverting Heston stochastic volatility model. SIAM J. Financ. Math. 1, 126–141 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Feng, J., Fouque, J.P., Kumar, R.: Small-time asymptotics for fast mean-reverting stochastic volatility models. Ann. Appl. Probab. 22, 1541–1575 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Figueroa-López, J.E., Houdré, Ch.: Small-time expansions for the transition distributions of Lévy processes. Stoch. Process. Appl. 119, 3862–3889 (2009)

    MATH  Google Scholar 

  26. Figueroa-López, J.E., Forde, M.: The small-maturity smile for exponential Lévy models. SIAM J. Financ. Math. 3, 33–65 (2012)

    MATH  Google Scholar 

  27. Forde, M., Jacquier, A.: Small-time asymptotics for implied volatility under the Heston model. IJTAF 12, 861–876 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Forde, M., Jacquier, A.: Small-time asymptotics for an uncorrelated local-stochastic volatility model. Appl. Math. Financ. 18, 517–535 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Forde, M., Jacquier, A.: Small-time asymptotics for implied volatility under a general local-stochastic volatility model. Appl. Math. Financ. 18, 517–535 (2011)

    MATH  Google Scholar 

  30. Forde, M., Jacquier, A., Mijatović, A.: Asymptotic formulae for implied volatility in the Heston model. Proc. R. Soc. Lond. A 466, 3593–3620 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Forde, M., Jacquier, A., Lee, R.: The small-time smile and term structure of implied volatility under the Heston model. SIAM J. Financ. Math. 3, 690–708 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Forde, M., Zhang, H.: Asymptotics for rough stochastic volatility and Lévy models (2015)

  33. Fouque, J.-P., Papanicolaou, G., Sircar, K.R.: Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  34. Fouque, J.-P., Papanicolaou, G., Sircar, K.R., Sølna, K.: Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  35. Fukasawa, M.: Asymptotic analysis for stochastic volatility: martingale expansion. Financ. Stoch. 15, 635–654 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Fukasawa, M.: Short-time at-the-money skew and fractional rough volatility. arXiv:1501.06980v1 (2015)

  37. Gao, K., Lee, R.: Asymptotics of implied volatility to arbitrary order. Financ. Stoch. 18, 349–392 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Garnier, J., Sølna, K.: Correction to Black-Scholes formula due to fractional stochastic volatility. SIAM J. Financ. Math. 8, 560–588 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Garnier, J., Sølna, K.: Option pricing under fast-varying long-memory stochastic volaitlity. arXiv:1604.00105v2 (2017)

  40. Gatheral, J. (joint work with C. Bayer, P. Friz, T. Jaisson, A. Lesniewski, and M. Rosenbaum): Rough Volatility, Slides, National School of Development. Peking University (2014)

  41. Gatheral, J. (joint work with C. Bayer, P. Friz, T. Jaisson, A. Lesniewski, and M. Rosenbaum): Volatility is Rough, Part 2: Pricing, Slides, Workshop on Stochastic and Quantitative Finance. Imperial College London, London (2014)

  42. Gatheral, J., Jaisson, T., Rosenbaum, M.: Volatility is Rough. arXiv:1410.3394 (2014)

  43. Gatheral, J., Hsu, E., Laurence, P., Ouyang, C., Wang, T.-H.: Asymptotics of implied volatility in local volatility models. Math. Financ. 22, 591–620 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Guennon, H., Jacquier, A., Roome, P.: Asymptotic behavior of the fractional Heston model. arXiv:1411.7653 (2014)

  45. Gulisashvili, A.: Analytically Tractable Stochastic Stock Price Models. Springer, Berlin (2012)

    MATH  Google Scholar 

  46. Gulisashvili, A., Horvath, B., Jacquier, A.: Mass at zero and small-strike implied volatility expansion in the SABR model. arXiv:1502.03254v1, http://ssrn.com/abstract=2563510 (2015). Accessed 23 Apr 2018

  47. Gulisashvili, A., Stein, E.M.: Asymptotic behavior of the stock price distribution density and implied volatility in stochastic volatility models. Appl. Math. Optim. 61, 287–315 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Gulisashvili, A., Viens, F., Zhang, X.: Extreme-strike asymptotics for general Gaussian stochastic volatility models. arXiv:1502.05442v1 (2015)

  49. Hagan, P.S., Kumar, D., Lesniewski, A., Woodward, D.E.: Managing smile risk. Wilmott Magazine (2003)

  50. Hagan, P.S., Lesniewski, A., Woodward, D.: Probability distribution in the SABR model of stochastic volatility. In: Friz, P.K., Gatheral, J., Gulisashvili, A., Jacquier, A., Teichmann, J. (eds.) Large Deviations and Asymptotic Methods in Finance, pp. 1–36. Springer, Cham (2015)

    MATH  Google Scholar 

  51. Henry-Labordère, P.: Analysis, Geometry and Modeling in Finance: Advanced Methods in Option Pricing. Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton (2008)

    Google Scholar 

  52. Houdré, C., Villa, J.: An example of infinite-dimensional quasi-helix. Contemp. Math. Am. Math. Soc. 336, 195–201 (2003)

    MathSciNet  MATH  Google Scholar 

  53. Lee, R.: The moment formula for implied volatility at extreme strikes. Math. Financ. 14, 469–480 (2004)

    MathSciNet  MATH  Google Scholar 

  54. Lewis, A.: Option Valuation Under Stochastic Volatility: With Mathematica Code. Finance Press, Newport Beach (2000)

    MATH  Google Scholar 

  55. Lewis, A.: Option Valuation Under Stochastic Volatility II: With Mathematica Code. Finance Press, Newport Beach (2016)

    MATH  Google Scholar 

  56. Lim, S.C.: Fractional Brownian motion and multifractional Brownian motion of Riemann-Liouville type. J. Phys. A 34, 1301 (2001)

    MathSciNet  MATH  Google Scholar 

  57. Medvedev, A., Scaillet, O.: Approximation and calibration of short-term implied volatilities under jump-diffusion stochastic volatility. Rev. Financ. Stud. 20, 427–459 (2007)

    Google Scholar 

  58. Muhle-Karbe, J., Nutz, M.: Small-time asymptotics of option prices and first absolute moments. J. Appl. Probab. 48, 1003–1020 (2011)

    MathSciNet  MATH  Google Scholar 

  59. Nourdin, I.: Selected Aspects of Fractional Brownian Motion. Springer, Milano (2012)

    MATH  Google Scholar 

  60. Nualart, D.: Fractional Brownian motion: stochastic calculus and applications. In: Proceedings of the International Congress of Mathematicians, Madrid, Spain, pp. 1541–1562. European Mathematical Society, Paris (2006)

  61. Paulot, L.: Asymptotic implied volatility at the second order with application to the SABR model. In: Friz, P.K., Gatheral, J., Gulisashvili, A., Jacquier, A., Teichmann, J. (eds.) Large Deviations and Asymptotic Methods in Finance. Springer, Cham (2015)

    MATH  Google Scholar 

  62. Roper, M., Rutkowski, M.: On the relationship between the call price surface and the implied volatility surface close to expiry. Int. J. Theor. Appl. Financ. 12, 427–441 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Rostek, S.: Option Pricing in Fractional Brownian Markets. Springer, Berlin (2009)

    MATH  Google Scholar 

  64. Stein, E., Stein, J.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4, 727–752 (1991)

    MATH  Google Scholar 

  65. Tankov, P., Mijatović, A.: A new look at short-term implied volatility in asset price models with jumps. Mathematical Finance. arXiv:1207.0843 (2012)

  66. Torres, S., Tudor, C.A., Viens, F.G.: Quadratic variations for the fractional-colored stochastic heat equation. Electron. J. Probab. 19, 1–51 (2014)

    MathSciNet  MATH  Google Scholar 

  67. Tudor, C.A.: Analysis of Variations for Self-Similar Processes. Springer, Cham (2013)

    MATH  Google Scholar 

  68. Vilela Mendez, R., Olivejra, M.J., Rodriguez, A.M.: The fractional volatility model: no-arbitrage, leverage and completeness. arXiv:1205.2866v1 (2012)

  69. Weisstein, E.W.: Inverse Erf. From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/InverseErf.html (2018). Accessed 23 Apr 2018

  70. Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions, vol. 1. Springer, New York (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their insightful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archil Gulisashvili.

Appendix: Proofs of the Main Theorems

Appendix: Proofs of the Main Theorems

Proof of Theorem 3

Fix \(x> 0\), and denote

$$\begin{aligned} J_x(T)=\int _0^{\infty } u^{-1}\exp \left\{ -\left[ \frac{\log ^2\frac{x}{s_0}}{ 2T^{2H+1}u^2}+\frac{T^{2H+1}u^2}{8}\right] \right\} {\widetilde{p}}_1(u)du . \end{aligned}$$
(47)

It is clear from (13) that the small-time asymptotic behavior of the density \(D_T(x)\) is determined by that of the integral \(J_x(T)\).

The next lemma will allow us to use Theorem 2 to estimate the integral in (47). \(\square \)

Lemma 2

Fix \(\alpha \in {\mathbb {R}}\), \(b> 0\), and \(\varepsilon > 0\). Let \(x> s_0+\varepsilon \), and suppose f is an integrable function on [0, b]. Then

$$\begin{aligned}&\int _0^b u^{\alpha }\exp \left\{ -\left[ \frac{\log ^2\frac{x}{s_0}}{2T^{2H+1}u^2 }+\frac{T^{2H+1}u^2}{8}\right] \right\} |f(u)|du =O_{\varepsilon }\left( \exp \left\{ -\frac{\log ^2\frac{x}{s_0}}{2b^2T^{2H+1}} \right\} \right) \end{aligned}$$

as \(T\rightarrow 0\).

Proof

The lemma is trivial if \(\alpha \ge 0\). For \(\alpha < 0\), we have

$$\begin{aligned}&\int _0^b u^{\alpha }\exp \left\{ -\left[ \frac{\log ^2\frac{x}{s_0}}{2T^{2H+1}u^2 }+\frac{T^{2H+1}u^2}{8}\right] \right\} |f(u)|du \nonumber \\&\quad \le \int _0^b u^{\alpha }\exp \left\{ -\frac{\log ^2\frac{x}{s_0}}{2T^{2H+1}u^2} \right\} |f(u)|du. \end{aligned}$$
(48)

The following equality holds for every \(A> 0\):

$$\begin{aligned} \left( u^{\alpha }\exp \left\{ -\frac{A}{u^2}\right\} \right) ^{\prime }=\left[ 2Au^{\alpha -3}+\alpha u^{\alpha -1} \right] \exp \left\{ -\frac{A}{u^2}\right\} . \end{aligned}$$

It follows that for \(2A>-\alpha b^2\), the function \( u\mapsto \frac{1}{u^{\alpha }}\exp \left\{ -\frac{A}{u^2}\right\} \) is increasing on the interval (0, b]. Set \(A=\frac{\log ^2\frac{x}{s_0}}{2T^{2H+1}}\). Next, using (48), we obtain

$$\begin{aligned}&\int _0^b u^{\alpha }\exp \left\{ -\left[ \frac{\log ^2\frac{x}{s_0}}{2T^{2H+1}u^2 }+\frac{T^{2H+1}u^2}{8}\right] \right\} |f(u)|du \nonumber \\&\quad \le b^{\alpha }\exp \left\{ -\frac{\log ^2\frac{x}{s_0}}{2b^2T^{2H+1}} \right\} \int _0^b|f(u)|du, \end{aligned}$$
(49)

provided that \(\log ^2\frac{x}{s_0}> b^2T^{2H+1}\). It is clear that the previous inequality holds for small enough values of T provided that \(x> s_0+\varepsilon \).

Finally, Lemma 2 follows from (49).

Using (10) with \(t=1\) and formula (8) for centered processes, we obtain

$$\begin{aligned} {\widetilde{p}}_1(y)={\widetilde{A}}y^{n_1(1)-1}\exp \left\{ -\frac{y^2}{ 2\lambda _1(1)}\right\} \left( 1+O\left( y^{-1}\right) \right) \end{aligned}$$
(50)

as \(y\rightarrow \infty \), where

$$\begin{aligned} {\widetilde{A}}=\frac{2^{1-\frac{n_1(1)}{2}}}{\Gamma \left( \frac{n_1(1)}{2} \right) } \lambda _1^{-\frac{n_1(1)}{2}}\prod _{k> n_1(1)}^{\infty }\left( \frac{ \lambda _1(1)}{\lambda _1(1)-\lambda _k(1)}\right) ^{\frac{1}{2}}. \end{aligned}$$
(51)

Let \(y_0> 0\) be a constant such that the big-O estimate in (50) is valid. Our next goal is to replace the function \({\widetilde{p}}_1\) in (47) by its approximation from (50), using Lemma 2. The resulting formula is

$$\begin{aligned} J_x(T)&={\widetilde{A}}\int _0^{\infty }u^{n_1(1)-2}\exp \left\{ -\left[ \frac{\log ^2\frac{x}{s_0}}{2T^{2H+1}u^2}\right. \right. \nonumber \\&\quad \left. \left. +\left( \frac{T^{2H+1}}{8}+\frac{1}{2\lambda _1(1)} \right) u^2\right] \right\} \left( 1+O\left( u^{-1}\right) \right) du \nonumber \\&\quad +O_{\varepsilon }\left( \exp \left\{ -\frac{\log ^2\frac{x}{s_0}}{2y_0^2T^{2H+1}} \right\} \right) \end{aligned}$$
(52)

as \(T\rightarrow 0\). Formula (52) can be obtained as follows. Applying Lemma 2 with \(\alpha =-1\), \(b=y_0\), and \(f={\widetilde{p}}_1\), to the integral with same integrand as in (47), we can include this integral in the error term in (52). Next, we can replace the function \({\widetilde{p}}_1\) in the integral over \([y_0,\infty )\) by the expression on the right-hand side of (50). Finally, we observe that

$$\begin{aligned}&\int _0^{y_0}u^{n_1(1)-2}\exp \left\{ -\left[ \frac{\log ^2\frac{x}{s_0}}{2T^{2H+1}u^2} +\left( \frac{T^{2H+1}}{8}+\frac{1}{2\lambda _1(1)} \right) u^2\right] \right\} \left( 1+O\left( u^{-1}\right) \right) du \nonumber \\&\quad =O_{\varepsilon }\left( \exp \left\{ -\frac{\log ^2\frac{x}{s_0}}{2y_0^2T^{2H+1}} \right\} \right) \end{aligned}$$
(53)

as \(T\rightarrow 0\). Indeed, formula (53) can be established by applying Lemma 2 to the expression on the left-hand side of (53) twice, first with \(\alpha =n_1(1)-2\), \(b=y_0\), and \(f(u)=\exp \{-\frac{u^2}{2\lambda _1(1)}\}\), and then with \(\alpha =n_1(1)-3\), \(b=y_0\), and \(f(u)=\exp \{-\frac{u^2}{2\lambda _1(1)}\}\). This proves formula (52). \(\square \)

To study the asymptotics of the function \(T\mapsto J_{x}(T)\) defined by (52), we consider the following two integrals:

$$\begin{aligned}&{\widetilde{J}}_{x}(T)={\widetilde{A}}\int _{0}^{\infty }u^{n_{1}(1)-2} \exp \left\{ -\left[ \frac{\log ^{2}\frac{x}{s_{0}}}{2T^{2H+1}u^{2}} +\left( \frac{T^{2H+1}}{8}+\frac{1}{2\lambda _{1}(1)}\right) u^{2}\right] \right\} du \end{aligned}$$

and

$$\begin{aligned}&{\widehat{J}}_{x}(T)={\widetilde{A}}\int _{0}^{\infty }u^{n_{1}(1)-3} \exp \left\{ -\left[ \frac{\log ^{2}\frac{x}{s_{0}}}{2T^{2H+1}u^{2}} +\left( \frac{T^{2H+1}}{8}+\frac{1}{2\lambda _{1}(1)}\right) u^{2}\right] \right\} du. \end{aligned}$$

Set

$$\begin{aligned} \beta _{T}=\frac{\log ^{2}\frac{x}{s_{0}}}{2T^{2H+1}},\quad \gamma _{T}= \frac{T^{2H+1}}{8}+\frac{1}{2\lambda _{1}(1)}. \end{aligned}$$

Note that \(\beta _{T}\) depends on x, while \(\gamma _{T}\) does not. Then we have

$$\begin{aligned} {\widetilde{J}}_{x}(T)={\widetilde{A}}\int _{0}^{\infty }u^{n_{1}(1)-2}\exp \left\{ -\left[ \frac{\beta _{T}}{u^{2}}+\gamma _{T}u^{2}\right] \right\} du \end{aligned}$$

and

$$\begin{aligned} {\widehat{J}}_{x}(T)={\widetilde{A}}\int _{0}^{\infty }u^{n_{1}(1)-3}\exp \left\{ -\left[ \frac{\beta _{T}}{u^{2}}+\gamma _{T}u^{2}\right] \right\} du. \end{aligned}$$

Next, making a substitution

$$\begin{aligned} u=\left( \frac{\beta _{T}}{\gamma _{T}}\right) ^{\frac{1}{4}}v, \end{aligned}$$

we transform the previous integrals as follows:

$$\begin{aligned} {\widetilde{J}}_{x}(T)={\widetilde{A}}\left( \frac{\beta _{T}}{\gamma _{T}} \right) ^{\frac{n_{1}(1)-1}{4}}\int _{0}^{\infty }v^{n_{1}(1)-2}\exp \left\{ - \sqrt{\beta _{T}\gamma _{T}}\left[ \frac{1}{v^{2}}+v^{2}\right] \right\} dv \end{aligned}$$

and

$$\begin{aligned} {\widehat{J}}_{x}(T)={\widetilde{A}}\left( \frac{\beta _{T}}{\gamma _{T}}\right) ^{\frac{n_{1}(1)-2}{4}}\int _{0}^{\infty }v^{n_{1}(1)-3}\exp \left\{ -\sqrt{ \beta _{T}\gamma _{T}}\left[ \frac{1}{v^{2}}+v^{2}\right] \right\} dv. \end{aligned}$$

Let us denote

$$\begin{aligned} z(T)=\frac{1}{4}\sqrt{\frac{\lambda _{1}(1)T^{2H+1}+4}{\lambda _{1}(1)T^{2H+1}}}. \end{aligned}$$
(54)

Then we have \( \sqrt{\beta _{T}\gamma _{T}}=z(T)\log \frac{x}{s_{0}}. \) Therefore,

$$\begin{aligned}&{\widetilde{J}}_{x}(T)={\widetilde{A}}\left( \frac{\beta _{T}}{\gamma _{T}} \right) ^{\frac{n_{1}(1)-1}{4}} \int _{0}^{\infty }v^{n_{1}(1)-2}\exp \left\{ -z(T) \log \frac{x}{s_{0}}\left[ \frac{1}{v^{2}}+v^{2}\right] \right\} dv \end{aligned}$$
(55)

and

$$\begin{aligned}&{\widehat{J}}_{x}(T) ={\widetilde{A}}\left( \frac{\beta _{T}}{\gamma _{T}} \right) ^{\frac{n_{1}(1)-2}{4}} \int _{0}^{\infty }v^{n_{1}(1)-3}\exp \left\{ -z(T) \log \frac{x}{s_{0}}\left[ \frac{1}{v^{2}}+v^{2}\right] \right\} dv. \end{aligned}$$
(56)

It follows from (54) that \(z(T)\rightarrow \infty \) as \(T\rightarrow 0 \). Our next goal is to apply Laplace’s method to study the asymptotic behavior of the functions \(T\mapsto {\widetilde{J}}_x(T)\) and \(T\mapsto \widehat{ J}_x(T)\) as \(T\rightarrow 0\). Note that the unique critical point of the function \(\psi (v)=v^{-2}+v^2\) is at \(v=1\). Moreover, we have \( \psi ^{\prime \prime }(1)=8> 0\).

We will first reduce the integrals in (55) and (56) to the integrals over the interval [0, 2] and give an error estimate. The next assertion will be helpful.

Lemma 3

Suppose \(a\in {\mathbb {R}}\) and \(0<\varepsilon < s_0\). Then

$$\begin{aligned}&\int _2^{\infty }v^a \exp \left\{ -\sqrt{\beta _T\gamma _T}\left[ \frac{1}{v^2}+v^2 \right] \right\} dv =O_{\varepsilon }\left( \exp \left\{ -4\sqrt{\beta _T\gamma _T} \right\} \right) \end{aligned}$$

as \(t\rightarrow 0\).

Proof

Fix a small number \(r> 0\). Then for \(0< T< T_0\), we have

$$\begin{aligned}&\int _2^{\infty }v^a \exp \left\{ -\sqrt{\beta _T\gamma _T}\left[ \frac{1}{v^2}+v^2 \right] \right\} dv \le \int _2^{\infty }v^a \exp \left\{ -\sqrt{\beta _T\gamma _T} v^2\right\} dv \\&\quad \le c_r\int _2^{\infty } \exp \left\{ -\left( \sqrt{\beta _T\gamma _T} -r\right) v^2\right\} dv \\&\quad =c_r\left( \sqrt{\beta _T\gamma _T}-r\right) ^{-\frac{1}{2}} \int _{2\sqrt{\sqrt{ \beta _T\gamma _T}-r}}^{\infty }e^{-u^2}du \le {\widetilde{c}}_r\exp \left\{ -4\left( \sqrt{\beta _T\gamma _T}-r\right) \right\} . \end{aligned}$$

The proof of Lemma 3 is thus completed. \(\square \)

Now, we are ready to apply Laplace’s method to the integrals in (55) and (56). The dependence of the parameter x in (55) and (56) is very simple. This allows us to obtain uniform error estimates. By taking into account Lemma 3, we see that for every \( \varepsilon >0\) and all \(x>s_{0}+\varepsilon \),

$$\begin{aligned} {\widetilde{J}}_{x}(T)&=\frac{{\widetilde{A}}\sqrt{\pi }}{2}\left( \frac{\beta _{T}}{\gamma _{T}}\right) ^{\frac{n_{1}(1)-1}{4}}\left( z(T)\log \frac{x}{s_{0}}\right) ^{-\frac{1}{2}}\exp \left\{ -2z(T)\log \frac{x}{s_{0}} \right\} \nonumber \\&\quad \times \, \left( 1+O_{\varepsilon }\left( \frac{1}{z(T)\log \frac{x }{s_{0}}}\right) \right) +O_{\varepsilon }\left( \exp \left\{ -4z(T) \log \frac{x}{s_{0}}\right\} \right) \end{aligned}$$
(57)

and

$$\begin{aligned} {\widehat{J}}_{x}(T)&=\frac{{\widetilde{A}}\sqrt{\pi }}{2}\left( \frac{\beta _{T}}{\gamma _{T}}\right) ^{\frac{n_{1}(1)-2}{4}}\left( z(T) \log \frac{x}{s_{0}} \right) ^{-\frac{1}{2}}\exp \left\{ -2z(T)\log \frac{x}{s_{0}}\right\} \nonumber \\&\quad \times \,\left( 1+O_{\varepsilon }\left( \frac{1}{z(T) \log \frac{x }{s_{0}} }\right) \right) +O_{\varepsilon }\left( \exp \left\{ -4z(T)\log \frac{x}{s_{0}}\right\} \right) \end{aligned}$$
(58)

as \(T\rightarrow 0\). Recall that the \(O_{\varepsilon }\) estimates in (57) and (58) are uniform with respect to \(x>s_{0}+\varepsilon \). Since

$$\begin{aligned} J_{x}(T)={\widetilde{J}}_{x}(T)+O_{\varepsilon }\left( {\widehat{J}} _{x}(T)\right) +O_{\varepsilon }\left( \exp \left\{ -\frac{\log ^{2}\frac{x}{ s_{0}}}{2y_0^2T^{2H+1}}\right\} \right) , \end{aligned}$$

as \(T\rightarrow 0\), formulas (57) and (58) imply that

$$\begin{aligned} J_{x}(T)&= \frac{{\widetilde{A}}\sqrt{\pi }}{2}\left( \frac{\beta _{T}}{\gamma _{T}}\right) ^{\frac{n_{1}(1)-1}{4}}\left( z(T)\log \frac{x}{s_{0} } \right) ^{-\frac{1}{2}}\exp \left\{ -2z(T)\log \frac{ x}{s_{0}} \right\} \\&\quad \times \,\left( 1+O_{\varepsilon }\left( \left[ \frac{\beta _{T}}{\gamma _{T}}\right] ^{-\frac{1}{4} }\right) \right) \left( 1+O_{\varepsilon }\left( \frac{1}{z(T) \log \frac{x }{s_{0}}}\right) \right) \\&\quad +\, O_{\varepsilon }\left( \exp \left\{ -\frac{\log ^{2}\frac{x}{s_{0}} }{2y_0^2T^{2H+1}}\right\} \right) +O_{\varepsilon }\left( \exp \left\{ -4z(T) \log \frac{x}{s_{0}}\right\} \right) \end{aligned}$$

as \(T\rightarrow 0\). Since for \(T<1\),

$$\begin{aligned} \frac{1}{4}\sqrt{\frac{\lambda _{1}(1)+4}{\lambda _{1}(1)}}T^{-H-\frac{1}{2} }>z(T)>\frac{1}{2}\lambda _{1}(1)^{-\frac{1}{2}}T^{-H-\frac{1}{2}}, \end{aligned}$$
(59)

we have

$$\begin{aligned}&O_{\varepsilon }\left( \exp \left\{ -\frac{\log ^{2}\frac{x}{s_{0}}}{ 2y_0^2T^{2H+1}}\right\} \right) +O_{\varepsilon }\left( \exp \left\{ -4z(T)\log \frac{x}{s_{0}}\right\} \right) \\&\quad =O_{\varepsilon }\left( \exp \left\{ -4z(T) \log \frac{x}{s_{0}} \right\} \right) \\&\quad =O_{\varepsilon }\left( \exp \left\{ -2\lambda _{1}(1)^{-\frac{1 }{2}}T^{-H-\frac{1}{2}}\log \frac{x}{s_{0}} \right\} \right) \end{aligned}$$

as \(T\rightarrow 0\), and therefore,

$$\begin{aligned} J_{x}(T)&= \frac{{\widetilde{A}}\sqrt{\pi }}{2}\left( \frac{\beta _{T}}{\gamma _{T}}\right) ^{\frac{n_{1}(1)-1}{4}}\left( z(T) \log \frac{x}{s_{0} } \right) ^{-\frac{1}{2}}\exp \left\{ -2z(T)\log \frac{ x}{s_{0}} \right\} \\&\quad \times \, \left( 1+O_{\varepsilon }\left( \left[ \frac{\beta _{T}}{\gamma _{T}}\right] ^{-\frac{1}{4} }\right) \right) \left( 1+O_{\varepsilon }\left( \frac{1}{z(T) \log \frac{x }{s_{0}} }\right) \right) \\&\quad +\, O_{\varepsilon }\left( \exp \left\{ -2\lambda _{1}(1)^{-\frac{1 }{2}}T^{-H-\frac{1}{2}}\log \frac{x}{s_{0}} \right\} \right) \end{aligned}$$

as \(T\rightarrow 0\). Moreover, for all \(T<1\) and \(x>s_{0}+\varepsilon \),

$$\begin{aligned} \left( \frac{\beta _{T}}{\gamma _{T}}\right) ^{-\frac{1}{4}}\ge c_{1}\frac{ T^{\frac{2H+1}{4}}}{\sqrt{ \log \frac{x}{s_{0}} }}\ge c_{2}\frac{T^{\frac{2H+1}{2}}}{\log \frac{x}{s_{0}}} \ge c_{3}\frac{1}{z(T) \log \frac{x}{s_{0}} }, \end{aligned}$$

and hence

$$\begin{aligned}&\left( 1+O_{\varepsilon }\left( \left[ \frac{\beta _{T}}{\gamma _{T}}\right] ^{-\frac{1}{4} }\right) \right) \left( 1+O_{\varepsilon }\left( \frac{1}{z(T)\log \frac{x }{s_{0}}}\right) \right) \\&\quad =1+O_{\varepsilon }\left( \left[ \frac{\beta _{T}}{\gamma _{T}} \right] ^{-\frac{1}{4}}\right) =1+O_{\varepsilon }\left( T^{ \frac{2H+1}{4}}\left( \log \frac{x}{s_{0}}\right) ^{-\frac{1}{2} }\right) \end{aligned}$$

as \(T\rightarrow 0\). Finally,

$$\begin{aligned} J_{x}(T)&=\frac{{\widetilde{A}}\sqrt{\pi }}{2}\left( \frac{\beta _{T}}{\gamma _{T}}\right) ^{\frac{n_{1}(1)-1}{4}}\left( z(T) \log \frac{x}{s_{0} }\right) ^{-\frac{1}{2}}\exp \left\{ -2z(T) \log \frac{ x}{s_{0}} \right\} \\&\quad \times \, \left( 1+O_{\varepsilon }\left( T^{\frac{2H+1}{4}}\left( \log \frac{x}{s_{0}}\right) ^{-\frac{1}{2}}\right) \right) \\&\quad +\, O_{\varepsilon }\left( \exp \left\{ -2\lambda _{1}(1)^{- \frac{1}{2}}T^{-H-\frac{1}{2}}\log \frac{x}{s_{0}} \right\} \right) \end{aligned}$$

as \(T\rightarrow 0\).

Recall that we assumed \(r=0\). It follows from (13) and (47) that

$$\begin{aligned} D_T(x)&=\frac{\sqrt{s_0}{\widetilde{A}}}{2\sqrt{2}}T^{-H-\frac{1}{2}}x^{-\frac{ 3}{2}}\left( \frac{\beta _T}{\gamma _T}\right) ^{\frac{n_1(1)-1}{4} }\left( z(T)\log \frac{x}{s_0}\right) ^{-\frac{1}{2}} \nonumber \\&\quad \times \, \exp \left\{ -2z(T)\log \frac{x}{s_0}\right\} \left( 1+O_{\varepsilon }\left( T^{\frac{2H+1}{4}} \left( \log \frac{x}{s_0} \right) ^{-\frac{1}{2}}\right) \right) \nonumber \\&\quad +\, O_{\varepsilon }\left( \exp \left\{ -2\lambda _1(1)^{-\frac{1}{2} } T^{-H-\frac{1}{2}}\log \frac{x}{s_0}\right\} \right) \end{aligned}$$
(60)

as \(T\rightarrow 0\).

Our next goal is to remove the last \(O_{\varepsilon }\)-term from formula (60). Analyzing the expressions in (60), we see that in order to prove the statement formulated above, it suffices to show that there exists a constant \(c>0\) independent of \(T<T_{0}\) and \(x>s_{0}+\varepsilon \) and such that

$$\begin{aligned} \left( \frac{x}{s_{0}}\right) ^{-2\lambda _{1}(1)^{-\frac{1}{2} }T^{-H-\frac{1}{2}}}&\le cT^{-H-\frac{1}{2}}x^{-\frac{3}{2}}\left( \log \frac{x}{s_{0}}\right) ^{\frac{n_{1}(1)-1}{4}}T^{-\frac{(2H+1)(n_{1}(1)-1)}{8 }}T^{\frac{2H+1}{4}} \nonumber \\&\quad \times \left( \log \frac{x}{s_{0}}\right) ^{-\frac{1}{2}}\left( \frac{x}{ s_{0}}\right) ^{-2z(T)}T^{\frac{2H+1}{4}}\left( \log \frac{x}{s_{0}}\right) ^{-\frac{1}{2}}. \end{aligned}$$
(61)

The previous inequality is equivalent to the following:

$$\begin{aligned} \left( \frac{x}{s_{0}}\right) ^{-2\lambda _{1}(1)^{-\frac{1}{2} }T^{-H-\frac{1}{2}}}&\le cT^{-\frac{(2H+1)(n_{1}(1)-1)}{8}}x^{-\frac{3}{2} }\left( \frac{x}{s_{0}}\right) ^{-2z(T)} \left( \log \frac{x}{s_{0}}\right) ^{\frac{n_{1}(1)-1}{4}-1} \end{aligned}$$
(62)

Using (54), we see that the inequality in (62) follows from the inequality

$$\begin{aligned} \left( \frac{x}{s_{0}}\right) ^{-2\lambda _{1}(1)^{-\frac{1}{2}}T^{-H-\frac{1}{2}}}&\le cT^{-\frac{(2H+1)(n_{1}(1)-1)}{8}} \left( \frac{x}{s_{0}}\right) ^{-\frac{3}{2}-\frac{1}{2} \lambda _{1}(1)^{-\frac{1}{2}}T^{-H-\frac{1}{2}}\sqrt{\lambda _{1}(1)T^{2H+1}+4}}\nonumber \\&\quad \times \, \left( \log \frac{x}{s_{0}}\right) ^{\frac{n_{1}(1)-1}{4} -1}. \end{aligned}$$
(63)

To prove the inequality in (63), we observe that for every small enough number \(\tau >0\) there exists a constant \(c_{\tau ,\varepsilon }\) such that

$$\begin{aligned} c_{\tau ,\varepsilon }\left( \frac{x}{s_{0}}\right) ^{-\tau }\le \left( \log \frac{x}{s_{0}}\right) ^{\frac{n_{1}(1)-1}{4}-1} \end{aligned}$$

for all \(x>s_{0}+\varepsilon \). Moreover, there exists \(T_{\tau ,\varepsilon }>0\) such that

$$\begin{aligned} \left( \frac{x_{0}}{s_{0}}\right) ^{-\tau T^{-H-\frac{1}{2}}}\le \left( \frac{s_{0}+\varepsilon }{s_{0}}\right) ^{-\tau T^{-H-\frac{1}{2}}}\le T^{- \frac{(2H+1)(n_{1}(1)-1)}{8}} \end{aligned}$$

for all \(T<T_{\tau ,\varepsilon }\). Now, it is clear that (63) follows from the estimate

$$\begin{aligned}&\left( 2\lambda _{1}(1)^{-\frac{1}{2}}-\tau \right) T^{-H-\frac{1 }{2}} \ge \frac{3}{2}+\frac{1}{2}\lambda _{1}(1)^{-\frac{1}{2}}T^{-H-\frac{1}{2} }\sqrt{\lambda _{1}(1)T^{2H+1}+4}+\tau , \end{aligned}$$
(64)

for all \(T<T_{\tau }\). It is not hard to see that there exist numbers \(\tau \) and \(T_{\tau }\), for which the inequality in (64) holds. This establishes (61), and it follows that

$$\begin{aligned} D_{T}(x)&=\frac{\sqrt{s_{0}}{\widetilde{A}}}{2\sqrt{2}}T^{-H-\frac{1}{2}}x^{- \frac{3}{2}}\left( \frac{\beta _{T}}{\gamma _{T}}\right) ^{\frac{n_{1}(1)-1}{ 4}}\left( z(T)\log \frac{x}{s_{0}}\right) ^{-\frac{1}{2}} \nonumber \\&\quad \times \exp \left\{ -2z(T)\log \frac{x}{s_{0}}\right\} \left( 1+O_{\varepsilon }\left( T^{\frac{2H+1}{4}}\left( \log \frac{x}{s_{0}} \right) ^{-\frac{1}{2}}\right) \right) \end{aligned}$$
(65)

as \(T\rightarrow 0\), where \({\widetilde{A}}\) is given by (51). Formula (65) will help us to characterize the asymptotic behavior of the function \(T\mapsto D_{T}(x)\).

Let us assume that \(x> s_0+\varepsilon \). Then we have

$$\begin{aligned} \left( \frac{\beta _T}{\gamma _T}\right) ^{\frac{n_1(1)-1}{4}}= \lambda _1(1)^{ \frac{n_1(1)-1}{4}}\left( \log \frac{x}{s_0}\right) ^{\frac{n_1(1)-1}{2}} T^{- \frac{(2H+1)(n_1(1)-1)}{4}}(1+h)^{-\frac{n_1(1)-1}{4}} \end{aligned}$$

where \(h=\frac{\lambda _1(1)T^{2H+1}}{4}\). Therefore,

$$\begin{aligned} \left( \frac{\beta _T}{\gamma _T}\right) ^{\frac{n_1(1)-1}{4}}&= \lambda _1(1)^{ \frac{n_1(1)-1}{4}}\left( \log \frac{x}{s_0}\right) ^{\frac{n_1(1)-1}{2}} T^{- \frac{(2H+1)(n_1(1)-1)}{4}} \nonumber \\&\quad \times \,\left( 1+O\left( T^{2H+1}\right) \right) \end{aligned}$$
(66)

as \(T\rightarrow 0\). Moreover,

$$\begin{aligned} z(T)^{-\frac{1}{2}}&=2\left[ \frac{\lambda _1(1)T^{2H+1}+4}{ \lambda _1(1)T^{2H+1}}\right] ^{-\frac{1}{4}} =\sqrt{2}\lambda _1(1)^{\frac{1}{4}}T^{\frac{2H+1}{4}}\left( 1+O \left( T^{2H+1}\right) \right) \end{aligned}$$
(67)

and

$$\begin{aligned}&\exp \left\{ -2z(T)\log \frac{x}{s_0}\right\} =\left( \frac{x}{s_0}\right) ^{- \frac{\sqrt{4+\lambda _1(1)T^{2H+1}}}{2\sqrt{\lambda _1(1)} T^{H+\frac{1}{2}}} } \end{aligned}$$
(68)

as \(T\rightarrow 0\). Next, combining (51), (65), (66), (67), and (68), and simplifying the resulting expressions, we obtain formula (14).

This completes the proof of Theorem 3.

Proof of Theorem 4

Let us consider the call pricing function \(T\mapsto C(T)\) with \(K> s_0 \). It is known that

$$\begin{aligned} C(T)=\int _K^{\infty }(x-K)D_T(x)dx. \end{aligned}$$
(69)

Therefore, we can use the uniform estimate in formula (14) to characterize the small-time behavior of the call pricing function. Let us consider the following integrals:

$$\begin{aligned} I_1(T)&= \int _K^{\infty }(x-K)x^{-\frac{3}{2}}\left( \log \frac{x}{s_0}\right) ^{ \frac{n_1(1)-2}{2}} \exp \left\{ -2z(T)\log \frac{x}{s_0}\right\} dx \nonumber \\&= s_0^{-\frac{1}{2}}\int _K^{\infty }\left( \log \frac{x}{s_0}\right) ^{\frac{ n_1(1)-2}{2}} \exp \left\{ -\left( \frac{1}{2}+2z(T)\right) \log \frac{x}{s_0} \right\} dx \nonumber \\&\quad -s_0^{-\frac{3}{2}}K\int _K^{\infty }\left( \log \frac{x}{s_0}\right) ^{ \frac{n_1(1)-2}{2}} \exp \left\{ -\left( \frac{3}{2}+2z(T)\right) \log \frac{x}{ s_0}\right\} dx \end{aligned}$$
(70)

and

$$\begin{aligned} I_2(T)&=\int _K^{\infty }(x-K)x^{-\frac{3}{2}}\left( \log \frac{x}{s_0}\right) ^{ \frac{n_1(1)-3}{2}} \exp \left\{ -2z(T)\log \frac{x}{s_0}\right\} dx \nonumber \\&=s_0^{-\frac{1}{2}}\int _K^{\infty }\left( \log \frac{x}{s_0}\right) ^{\frac{ n_1(1)-3}{2}} \exp \left\{ -\left( \frac{1}{2}+2z(T)\right) \log \frac{x}{s_0} \right\} dx \nonumber \\&\quad -s_0^{-\frac{3}{2}}K\int _K^{\infty }\left( \log \frac{x}{s_0}\right) ^{ \frac{n_1(1)-3}{2}} \exp \left\{ -\left( \frac{3}{2}+2z(T)\right) \log \frac{x}{ s_0}\right\} dx, \end{aligned}$$
(71)

where we use the notation in (54) for the sake of shortness.

We will next make a substitution \(u=(2z(T)-\frac{1}{2})\log \frac{x}{s_0}\) in the integral on the second line in (70). The resulting expression is as follows:

$$\begin{aligned} s_0^{\frac{1}{2}}\left( 2z(T)-\frac{1}{2}\right) ^{-\frac{n_1(1)}{2} }\int _{\left( 2z(T)-\frac{1}{2}\right) \log \frac{K}{s_0}} ^{\infty }u^{\frac{ n_1(1)-2}{2}}e^{-u}du, \end{aligned}$$

which is equal to

$$\begin{aligned} s_0^{\frac{1}{2}}\left( 2z(T)-\frac{1}{2}\right) ^{-\frac{n_1(1)}{2} }\Gamma \left( \frac{n_1(1)}{2}, \left( 2z(T)-\frac{1}{2}\right) \log \frac{K}{s_0 }\right) , \end{aligned}$$

where the symbol \(\Gamma \) stands for the upper incomplete gamma function defined by

$$\begin{aligned} \Gamma (s,x)=\int _x^{\infty }v^{s-1}e^{-v}dv. \end{aligned}$$

Making similar transformations in the other integrals in (70) and (71), we finally obtain

$$\begin{aligned} I_1(T)&=s_0^{\frac{1}{2}}\left( 2z(T)-\frac{1}{2}\right) ^{-\frac{n_1(1)}{2} }\Gamma \left( \frac{n_1(1)}{2}, \left( 2z(T)-\frac{1}{2}\right) \log \frac{K}{s_0 }\right) \\&\quad -s_0^{-\frac{1}{2}}K\left( 2z(T)+\frac{1}{2}\right) ^{-\frac{n_1(1)}{2} }\Gamma \left( \frac{n_1(1)}{2}, \left( 2z(T)+\frac{1}{2}\right) \log \frac{K}{s_0 }\right) \end{aligned}$$

and

$$\begin{aligned} I_2(T)&=s_0^{\frac{1}{2}}\left( 2z(T)-\frac{1}{2}\right) ^{-\frac{n_1(1)-1}{2} }\Gamma \left( \frac{n_1(1)-1}{2}, \left( 2z(T)-\frac{1}{2}\right) \log \frac{K}{ s_0}\right) \\&\quad -s_0^{-\frac{1}{2}}K\left( 2z(T)+\frac{1}{2}\right) ^{-\frac{n_1(1)-1}{2} }\Gamma \left( \frac{n_1(1)-1}{2}, \left( 2z(T)+\frac{1}{2}\right) \log \frac{K}{ s_0}\right) . \end{aligned}$$

It is known that

$$\begin{aligned} \Gamma (s,x)=x^{s-1}e^{-x}\left( 1+(s-1)x^{-1}+O\left( x^{-2}\right) \right) \end{aligned}$$
(72)

as \(x\rightarrow \infty \). Formula (72) can be easily derived from the recurrence relation

$$\begin{aligned} \Gamma (s,x)=(s-1)\Gamma (s-1,x)+x^{s-1}e^{-x} \end{aligned}$$

for the upper incomplete gamma function. It follows that

$$\begin{aligned} I_{1}(T)&=s_{0}^{2z(T)}K^{-2z(T)+\frac{1}{2}}\left( \log \frac{K}{s_{0}} \right) ^{\frac{n_{1}(1)-2}{2}} \\&\quad \times \, \left[ \frac{1}{2z(T)-\frac{1}{2}}\left( 1+\frac{n_{1}(1)-2}{ 2(2z(T)-\frac{1}{2})\log \frac{K}{s_{0}}}+O(T^{2H+1})\right) \right. \\&\quad \left. -\,\frac{1}{2z(T)+\frac{1}{2}}\left( 1+\frac{n_{1}(1)-2}{2(2z(T)+\frac{ 1}{2})\log \frac{K}{s_{0}}}+O(T^{2H+1})\right) \right] \\&=s_{0}^{2z(T)}K^{-2z(T)+\frac{1}{2}}\left( \log \frac{K}{s_{0}}\right) ^{ \frac{n_{1}(1)-2}{2}}\left( \frac{1}{4z(T)^{2}-\frac{1}{4}}+O\left( T^{3H+ \frac{3}{2}}\right) \right) \end{aligned}$$

as \(T\rightarrow 0\). Therefore,

$$\begin{aligned}&I_{1}(T)=s_{0}^{2z(T)}K^{-2z(T)+\frac{1}{2}}\left( \log \frac{K}{s_{0}} \right) ^{\frac{n_{1}(1)-2}{2}}\left( 4z(T)^{2}-\frac{1}{4}\right) ^{-1} \nonumber \\&\quad \times \left( 1+O\left( T^{H+\frac{1}{2}}\right) \right) \end{aligned}$$
(73)

as \(T\rightarrow 0\). Similarly,

$$\begin{aligned}&I_{2}(T)=s_{0}^{2z(T)}K^{-2z(T)+\frac{1}{2}}\left( \log \frac{K}{s_{0}} \right) ^{\frac{n_{1}(1)-3}{2}}\left( 4z(T)^{2}-\frac{1}{4}\right) ^{-1} \nonumber \\&\quad \times \left( 1+O\left( T^{H+\frac{1}{2}}\right) \right) \end{aligned}$$
(74)

as \(T\rightarrow 0\). It is not hard to see that

$$\begin{aligned} \left( 4z(T)^{2}-\frac{1}{4}\right) ^{-1}=\lambda _{1}(1)T^{2H+1}. \end{aligned}$$

It follows from (73) and (74) that

$$\begin{aligned} I_{1}(T)&=\lambda _{1}(1)K^{\frac{1}{2}}\left( \log \frac{K}{s_{0}}\right) ^{\frac{n_{1}(1)-2}{2}}\left( \frac{s_{0}}{K}\right) ^{2z(T)}T^{2H+1} \left( 1+O\left( T^{H+\frac{1}{2}}\right) \right) \end{aligned}$$
(75)

as \(T\rightarrow 0\). Similarly,

$$\begin{aligned} I_{2}(T)&=\lambda _{1}(1)K^{\frac{1}{2}}\left( \log \frac{K}{s_{0}}\right) ^{\frac{n_{1}(1)-3}{2}}\left( \frac{s_{0}}{K}\right) ^{2z(T)}T^{2H+1} \left( 1+O\left( T^{H+\frac{1}{2}}\right) \right) \end{aligned}$$
(76)

as \(T\rightarrow 0\). Using (14), (69), (70) and (71), we see that

$$\begin{aligned} C(T)= & {} \frac{\sqrt{s_0}}{2^{\frac{n_1(1)}{2}}\Gamma \left( \frac{n_1(1)}{2} \right) }\lambda _1(1)^{-\frac{n_1(1)}{4}} \prod _{k> n_1(1)}^{\infty }\left( \frac{ \lambda _1(1)}{\lambda _1(1)-\lambda _k(1)}\right) ^{\frac{1}{2}} \\&\times \, T^{-\frac{(2H+1)n_1(1)}{4}} \left( 1+O\left( T^{2H+1}\right) \right) \left[ I_1(T)+O\left( T^{\frac{2H+1}{4}}I_2(T)\right) \right] \end{aligned}$$

as \(T\rightarrow 0\). Next, (75) and (76), imply

$$\begin{aligned} C(T)&=\frac{(s_0K)^{\frac{1}{2}}}{2^{\frac{n_1(1)}{2}}\Gamma \left( \frac{ n_1(1)}{2}\right) } \lambda _1(1)^{-\frac{n_1(1)-4}{4}}\prod _{k> n_1(1)}^{\infty } \left( \frac{\lambda _1(1)}{\lambda _1(1)-\lambda _k(1)}\right) ^{\frac{1}{2}} \nonumber \\&\quad \times \, \left( \log \frac{K}{s_0}\right) ^{\frac{n_1(1)-2}{2}}T^{\frac{ (2H+1)(4-n_1(1))}{4}}\left( \frac{s_0}{K}\right) ^{2z(T)} \left( 1+O\left( T^{ \frac{2H+1}{4}}\right) \right) \end{aligned}$$
(77)

as \(T\rightarrow 0\). We also have

$$\begin{aligned} \sqrt{\frac{\lambda _1(1)T^{2H+1}+4}{\lambda _1(1)T^{2H+1}}}-\sqrt{\frac{4}{ \lambda _1(1)T^{2H+1}}} =O\left( T^{H+\frac{1}{2}}\right) \end{aligned}$$
(78)

as \(T\rightarrow 0\). Therefore,

$$\begin{aligned} \left( \frac{s_0}{K}\right) ^{2z(T)}&=\exp \left\{ -2z(T)\log \frac{K}{s_0} \right\} \\&=\exp \left\{ -\frac{1}{2}\sqrt{\frac{\lambda _1(1)T^{2H+1}+4}{ \lambda _1(1)T^{2H+1}}}\log \frac{K}{s_0}\right\} \\&=\exp \left\{ -\frac{1}{2} \sqrt{\frac{4}{\lambda _1(1)T^{2H+1}}}\log \frac{K}{s_0}\right\} \\&\quad \times \,\exp \left\{ -\frac{1}{2}\left[ \sqrt{\frac{\lambda _1(1)T^{2H+1}+4}{ \lambda _1(1)T^{2H+1}}}-\sqrt{\frac{4}{\lambda _1(1)T^{2H+1}}}\right] \log \frac{ K}{s_0}\right\} \end{aligned}$$

as \(T\rightarrow 0\). Using (78), we obtain

$$\begin{aligned}&\left( \frac{s_0}{K}\right) ^{2z(T)}=\left( \frac{s_0}{K}\right) ^{ \lambda _1(1)^{-\frac{1}{2}}T^{-H-\frac{1}{2}}} \left( 1+O\left( T^{H+\frac{1}{2 }}\right) \right) \end{aligned}$$
(79)

as \(T\rightarrow 0\).

Now, it is clear that Theorem 4 follows from (77) and (79). \(\square \)

figure c
figure d

From top to bottom and left to right: IV with \(\sigma =2\), \(t\in [\)1 day, 2 weeks], \(H=0.25,\) 0.35,  0.40,  0.45,  0.49,  0.51,  0.55,  0.60,  0.75,  0.85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulisashvili, A., Viens, F. & Zhang, X. Small-Time Asymptotics for Gaussian Self-Similar Stochastic Volatility Models. Appl Math Optim 82, 183–223 (2020). https://doi.org/10.1007/s00245-018-9497-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9497-6

Keywords

Mathematics Subject Classification

Navigation