Skip to main content
Log in

Discrete-Time Mean Field Partially Observable Controlled Systems Subject to Common Noise

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this article, we provide the first systemic study on discrete time partially observable mean field systems in the presence of a common noise. Each player makes decision solely based on the observable process. Both the mean field games and the related tractable mean field type stochastic control problem are studied. We first solve the mean field type control problem using classical discrete time Kalman filter with notable modifications. The unique existence of the resulted forward backward stochastic difference system is then established by separation principle. The mean field game problem is also solved via an application of stochastic maximum principle, while the existence of the mean field equilibrium is shown by the Schauder’s fixed point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, D., Djehiche, B.: A maximum principle for sdes of mean-field type. Appl. Math. Optim. 63(3), 341–356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardi, M.: Explicit solutions of some linear-quadratic mean field games. Netw. Heterog. Media 7(2), 243–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A.: Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Bensoussan, A., Chau, M.H.M., Yam, S.C.P.: Mean field stackelberg games: aggregation of delayed instructions. SIAM J. Control Optim. 53(4), 2237–2266 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bensoussan, A., Chau, M.H.M., Yam, S.C.P.: Mean field games with a dominating player. Appl. Math. Optim. 74(1), 91–128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bensoussan, A., Frehse, J., Yam, S.C.P.: Mean Field Games and Mean Field Type Control Theory. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  7. Bensoussan, A., Sung, J., Yam, S.C.P., Yung, S.P.: Linear-quadratic mean field games. J. Optim. Theory Appl. 169(2), 496–529 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollobás, B.: Linear Analysis: An Introductory Course. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  9. Buckdahn, R., Djehiche, B., Li, J., Peng, S.: Mean-field backward stochastic differential equations: a limit approach. Ann. Probab. 37(4), 1524–1565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buckdahn, R., Djehiche, B., Li, J.: A general stochastic maximum principle for sdes of mean-field type. Appl. Math. Optim. 64(2), 197–216 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cardaliaguet, P.: Notes on Mean Field Games. Technical Report (2010)

  12. Carmona, R., Delarue, F.: Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51(4), 2705–2734 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carmona, R., Fouque, J.-P., Sun, Li-Hsien: Mean field games and systemic risk. Commun. Math. Sci. 13(4), 911–933 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carmona, R., Delarue, F., Lacker, D.: Mean field games with common noise. Ann. Probab. (2016) (Forthcoming)

  15. Garnier, J., Papanicolaou, G., Yang, T.W.: Large deviations for a mean field model of systemic risk. SIAM J. Financ. Math. 4(1), 151–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guéant, O., Lasry, J.M., Lions, P.L.: Mean Field Games and Applications. Paris-Princeton Lectures on Mathematical Finance 2010, pp. 205–266. Springer, New York (2011)

    Book  MATH  Google Scholar 

  17. Huang, J., Wang, S.: A class of mean-field LQG games with partial information. arXiv:1403.5859 (2014) (preprint)

  18. Huang, M.: Large-population lqg games involving a major player: the nash certainty equivalence principle. SIAM J. Control Optim. 48(5), 3318–3353 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, M., Caines, P.E., Malhamé, R.P.: Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In Proceedings of the 42nd IEEE Conference on Decision and Control, 2003, vol. 1, pp. 98–103. IEEE, New York (2003)

  20. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Hunter, J.K.: Measure theory. University Lecture Notes, Department of Mathematics, University of California at Davis. http://www.math.ucdavis.edu/~hunter/measure_theory (2011)

  22. Kolokoltsov, V.N., Troeva, M., Yang, W.: On the rate of convergence for the mean-field approximation of controlled diffusions with large number of players. Dyn. Games Appl. 4(2), 208–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. i–le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–925 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lasry, J.M., Lions, P.L.: Jeux à champ moyen. ii–horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meyer-Brandis, T., Øksendal, B., Zhou, X.: A mean-field stochastic maximum principle via Malliavin calculus. Stochastics 84(5–6), 643–666 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Nourian, M., Caines, P.E.: \(\epsilon \)-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim. 51(4), 3302–3331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Şen, N., Caines, P.E.: Mean field games with partially observed major player and stochastic mean field. In: 53rd IEEE Conference on Decision and Control, pp. 2709–2715. IEEE, New York (2014)

  29. Stein, E.M., Shakarchi, R.: Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author-Michael Chau acknowledges the financial support from Imperial College London and The University of Hong Kong, and the present work constitutes a part of his work for his postgraduate dissertation. The third author-Phillip Yam acknowledges the financial support from The Hong Kong RGC GRF 14301015 with the project title: Advance in Mean Field Theory and GRF 11303316 with the project title: Mean Field Control with Partial Information. Phillip Yam also acknowledges the financial support from Department of Statistics of Columbia University in the City of New York during the period he was a visiting faculty member.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. P. Yam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chau, M.H.M., Lai, Y. & Yam, S.C.P. Discrete-Time Mean Field Partially Observable Controlled Systems Subject to Common Noise. Appl Math Optim 76, 59–91 (2017). https://doi.org/10.1007/s00245-017-9437-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9437-x

Keywords

Navigation