Skip to main content
Log in

Exponential Asymptotic Stability for the Klein Gordon Equation on Non-compact Riemannian Manifolds

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

The Klein Gordon equation subject to a nonlinear and locally distributed damping, posed in a complete and non compact n dimensional Riemannian manifold \((\mathcal {M}^n,\mathbf {g})\) without boundary is considered. Let us assume that the dissipative effects are effective in \((\mathcal {M}\backslash \Omega ) \cup (\Omega \backslash V)\), where \(\Omega \) is an arbitrary open bounded set with smooth boundary. In the present article we introduce a new class of non compact Riemannian manifolds, namely, manifolds which admit a smooth function f, such that the Hessian of f satisfies the pinching conditions (locally in \(\Omega \)), for those ones, there exist a finite number of disjoint open subsets \( V_k\) free of dissipative effects such that \(\bigcup _k V_k \subset V\) and for all \(\varepsilon >0\), \(meas(V)\ge meas(\Omega )-\varepsilon \), or, in other words, the dissipative effect inside \(\Omega \) possesses measure arbitrarily small. It is important to be mentioned that if the function f satisfies the pinching conditions everywhere, then it is not necessary to consider dissipative effects inside \(\Omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Recall that a Riemannian manifold (Mg) is said to be stochastically complete if for all \((x,t)\in M\times \big ]0,+\infty \big [\), \(\int _Mp(x,y,t)\,\mathrm {d}M=1\), where p is the heat kernel of the Laplacian \(\Delta _g\). It is well known (see [32]), that stochastic completeness is equivalent to the weak maximum principle at infinity. The weak maximum principles says that, given a function \(u:M\rightarrow \mathbb {R}\) of class \(\mathcal C^2\) with \(\sup u=u_*<+\infty \), then there exists a sequence \((x_k)_k\) in M such that \(u(x_k)\ge u_*-\frac{1}{k}\) and \(\Delta _g u(x_k)<\frac{1}{k}\) for all \(k\ge 1\).

  2. A complete Riemannian manifold is said to be parabolic if it does not admit a global positive Green function.

  3. Actually, for \(k>0\), \(M^n=\big ]0,\pi \big [\times \mathbb S^{n-1}\).

  4. Note that, when imposing the pinching condition (5.7), the relevant quantity is simply the quotient B / A. Namely, a function f satisfies (5.7) if and only if the function \(\widetilde{f}=\frac{1}{A} f\) satisfies \(1\le \mathrm {Hess}(\widetilde{f})\le B/A\). This implies, in particular, that there is no loss of generality in assuming \(A<\alpha <B\) for any \(\alpha >0\).

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Alabau-Boussouira, F.: Convexity and weighted inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51(1), 61–105 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bessa, G.P., Montenegro, F., Piccione, P.: Riemannian submersions with discrete spectrum. J. Geom. Anal. (to appear). arXiv:1001.0853

  4. Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei, Noordhoff International Publishing, Bucuresti Romania, Leyden (1976)

    Book  Google Scholar 

  5. Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)

    Article  MathSciNet  Google Scholar 

  6. Brézis, H.: Análisis Funcional. Teoría y Aplicaciones. Alianza Editorial, S.A., Madrid (1984)

  7. Brézis, H.: Operateurs Maximaux Monotones et Semigroups de Contractions dans les Spaces de Hilbert. North Holland Publishing Co., Amsterdam (1973)

    MATH  Google Scholar 

  8. Brézis, H.: Autumn Course On Semigoups, Theory and Applications. Lecture Notes taken by L. COHEN. International Center for Theoretical Physics, Triest (1984)

  9. Brézis, H.: Cazenave T. Nonlinear Evolution Equations. Preliminary Version of Chapters 1,2 and 3 and the Appendix (1994)

  10. Burq, N., Gérard, P.: Contrôle Optimal des équations aux dérivées partielles. Url:http://www.math.u-psud.fr/~burq/articles/coursX (2001)

  11. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Lasiecka, I.: Wellposedness and optimal decay rates for wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)

    Article  Google Scholar 

  12. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Uniform Stabilization of the wave equation on compact surfaces and locally distributed damping. Trans. AMS 361(9), 4561–4580 (2009)

    Article  Google Scholar 

  13. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result, -. Arch. Ration. Mech. Anal. 197, 925–964 (2010)

    Article  MathSciNet  Google Scholar 

  14. Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144(1), 189–237 (1996)

    Article  MathSciNet  Google Scholar 

  15. Christianson, H.: Semiclassical non-concetration near hyperbolic orbits. J. Funct. Anal. 246(2), 145–195 (2007)

    Article  MathSciNet  Google Scholar 

  16. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. II. Springer, Berlin (1990)

    MATH  Google Scholar 

  17. Dehman, B., Lebeau, G., Zuazua, E.: Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. 36, 525–551 (2003)

    Article  MathSciNet  Google Scholar 

  18. Do Carmo, M.P.: Riemannian geometry Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston (1992)

    Book  Google Scholar 

  19. Donnelly, H., Li, P.: Pure point spectrum and negative curvature for noncompact manifolds. Duke Math. J. 46, 497–503 (1979)

    Article  MathSciNet  Google Scholar 

  20. Evans, L.C. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, A.M.S

  21. Fukuoka, R.: Mollifier smoothing of tensor fields on differentiable manifolds and applications to Riemannian Geometry. arXiv:math.DG/0608230

  22. Greene, R.E., Wu, H.: \(C^\infty \)-approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. École Norm. Sup. 12(1), 47–84 (1979)

    Article  MathSciNet  Google Scholar 

  23. Hebey, E.: Sobolev Space on Riemannian Manifolds. Springer, Berlin (1996)

    Book  Google Scholar 

  24. Hitrik, M.: Expansions and eigenfrequencies for damped wave equations. Journèes“Équations aux Dérivées Patielles” (Plestin-les-Gréves, 2001), Exp. No. VI, 10 pp., Univ. Nantes, Nantes (2001)

  25. Jorge, L.P., Xavier, F.: An inequality between the exterior diameter and the mean curvature of bounded immersions. Math. Z. 178, 77–82 (1981)

    Article  MathSciNet  Google Scholar 

  26. Lasiecka, I., Triggiani, R., Yao, P.F.: An observability estimate in \(L^2 \times H^{-1}\) for send order hyperbolic equations with variable coefficients. In: Control of Distributed Parameter and Stochastic systems. Kluwer (1999)

  27. Lasiecka, I., Tataru, D.: Uniform Boundary Stabilization of Semilinear Wave Equations with Nonlinear Boundary Damping. Lecture Notes in Pure and Applied Maths, vol. 142. Dekker, New York (1993)

    MATH  Google Scholar 

  28. Lasiecka, I., Triggiani, R.: Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometric conditions. Appl. Math. Optim. 25, 189–224 (1992)

    Article  MathSciNet  Google Scholar 

  29. Lions, J.L.: Contrôlabilité Exacte Pertubations et Stabilisation de Systèmes Distribués. Masson, Paris (1988)

    MATH  Google Scholar 

  30. Lions, J.L., Magenes, E.: Non-homogeneous Boudary Value Problems and Applications. Springer, Berlin (1972)

    MATH  Google Scholar 

  31. Milnor, J.: Lectures on the h-Cobordism Theorem. Princeton University Press, Princeton. Notes by L. Siebenmann and J. Sondow (1965)

  32. Pigola, S., Rigoli, M., Setti, A.: Maximum principle on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174(822) (2005)

    Article  MathSciNet  Google Scholar 

  33. Rauch, J., Taylor, M.: Decay of solutions to n ondissipative hyperbolic systems on compact manifolds. Commun. Pure Appl. Math. 28(4), 501–523 (1975)

    Article  Google Scholar 

  34. Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)

    Article  MathSciNet  Google Scholar 

  35. Simon, J.: Compact Sets in the Space \({\bf L}^p(0,T;B)\). Annali di Matematica pura ed applicata 146(1), 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  36. Taylor Michael, E.: Partial Differential Equations I. Basic Theory, 2nd edn. Springer, Berlin (2010)

    Google Scholar 

  37. Triggiani, R., Yao, P.E.: Calerman estimates with no lower-Oder terms for general Riemannian wave equations. Global uniquenees and observability in one shot. Appl. Math. Optim. 46, 331–375 (2002)

    Article  MathSciNet  Google Scholar 

  38. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Scott, Foresman and Company, Glenview (1971)

    MATH  Google Scholar 

  39. Yao, P., Lasiecka, I., Triggiani, R.: Inverse/observability estimates for second-order hiperbolic equations with variable coefficients. J. Math. Anal. Apl. 235, 13–57 (1999)

    Article  Google Scholar 

  40. Yao, P.: On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J. Control Optim. 37(5), 1568–1599 (1999)

    Article  MathSciNet  Google Scholar 

  41. Yao, P.: Modeling and control in vibrational and structural dynamics. A differential geometric approach. Chapman e Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton (2011). xiv+405 pp. ISBN: 978-1-4398-3455-8. (o livro dele)

  42. Yao, P., Liu, Y., Li, J.: Decay rates of the hyperbolic equation in an exterior domain with half-linear and nonlinear boundary dissipations. J. Syst. Sci. Complex. 29(3), 657–680 (2016)

    Article  MathSciNet  Google Scholar 

  43. Zeidler, E.: Nonlinear Functional Analysis and its Aplications. Vol 2A: Linear Monotone Operators. Springer, Berlin (1990)

    Google Scholar 

  44. Zuazua, E.: Exponential decay for the semilinear wave equation whith localized damping in unbounded domains. J. Math. Pures Appl. 70, 513–529 (1992)

    MATH  Google Scholar 

Download references

Acknowledgements

Research of Marcelo M. Cavalcanti partially supported by the CNPq Grant 300631/2003-0. Research of Valéria N. Domingos Cavalcanti partially supported by the CNPq Grant 304895/2003-2. Research of Paolo Piccione partially supported by CNPq and Fapesp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Bortot.

Appendix

Appendix

We start this section by considering a uniqueness result due to Bur and Gérard [10] (see p. 80, Sect. 6) or Lasiecka et. al. [26]. Let us consider the wave equation posed in a compact Riemannian manifold (Mg) with boundary. If \((\omega , T_0)\) controls M, then the following observability inequality holds for ultra weak solutions to problem

$$\begin{aligned} \left\{ \begin{aligned}&v_{tt} - \Delta _g v=0 ~\hbox { in }M \times (0,T),\\&v=0 ~\hbox { on }\partial M \times (0,T),\\&v(0)=v_0\in L^2(M); v_t(0)=v_1 \in H^{-1}(M), \end{aligned} \right. \end{aligned}$$
(6.1)

holds:

$$\begin{aligned} ||v_0||_{L^2(M)}^2 + ||v_1||_{H^{-1}(M)} \le C \int _0^T \int _\omega |v(x,t)|^2\,d{\mathcal {M}}dt, \end{aligned}$$
(6.2)

for a certain constant C and for all \(T\ge T_0\) and for all \(\{v_0,v_1\}\in L^2(M) \times H^{-1}(M)\).

Following we will show that if the Riemannian manifold M admits a function with positive defined Hessian in some subset \( U \subset \text{ int }M \), then any geodesic on U hits \( \partial U \).

We consider a Riemannian manifold M Riemannian metric \(G=\left< \cdot , \cdot \right>\) and Riemannian connection \(\tilde{\nabla }\). We denote its Laplace–Beltrami operator by \( \Delta \). Fix a coordinate system \((x_1, \ldots , x_n)\) on M, denote \(G_{ij}=\left<\partial /\partial x_i,\partial /\partial x_j\right>\), let \(G^{ij}\) be the inverse matrix of \(G_{ij}\). The Laplace–Beltrami operator in this coordinate system is given by

$$\begin{aligned} \Delta u=\frac{1}{\sqrt{\det G_{ij}}}\sum _{i,j=1}^n \frac{\partial }{\partial x_i}\left( \sqrt{\det G_{ij}}G^{ij} \frac{\partial u}{\partial x_j} \right) , \end{aligned}$$

where \(\nabla \) is the usual gradient correspondent to the Euclidean metric on the domain \((x_1, \ldots , x_n)\).

The Hessian of a smooth function \(\phi :M\rightarrow \mathbb R\) is a symmetric 2-form on M defined as

$$\begin{aligned} \nabla ^2 \phi (X,Y)=XY(\phi )-\tilde{\nabla }_XY (\phi ), \end{aligned}$$
(6.3)

where X and Y are vector fields on M. Here \(X(\phi )\) denotes the directional derivative of \(\phi \) in the direction of the vector field X. It is well known that the value of \(\nabla ^2(X,Y)(p)\) depends only on the values of X and Y on p. It means that the right-hand side of (6.3) does not depend on the smooth extension we take for X(p) and Y(p).

A curve \(\gamma :(-\varepsilon ,\varepsilon ) \rightarrow M\) is a geodesic if \(\tilde{\nabla }_{\gamma ^\prime (t)}\gamma ^\prime (t)\equiv 0\).

Lemma 6.1

Let M be a complete Riemannian manifold, eventually with boundary, and let \(\phi :\text {int}M\rightarrow \mathbb R\) be a smooth function. Suppose that \(\phi \) is bounded and \(\nabla ^2 \phi (v,v)\ge c\Vert v \Vert ^2\) on an open subset \(U\subset \text {int} M\), where \(c>0\) is a constant. Then any geodesic on U hits \(\partial U\).

Proof

Let \(\gamma \) be a geodesic on U. Then

$$\begin{aligned} \frac{d^2}{dt^2}\phi (\gamma (t))= & {} \gamma ^\prime (t) \gamma ^\prime (t) \phi = \nabla ^2 \phi (\gamma ^\prime (t),\gamma ^\prime (t))+ ( \nabla _{\gamma ^\prime (t)}\gamma ^\prime (t))(\phi )\\= & {} \tilde{\nabla }^2 \phi (\gamma ^\prime (t),\gamma ^\prime (t))\ge c \Vert \gamma ^\prime (t)\Vert ^2 \end{aligned}$$

where the last equality holds because \(\gamma \) is a geodesic. Observe that the last term is a positive real constant because \(\Vert \gamma ^\prime (t) \Vert \) does not depend on t.

Then \(\phi (\gamma (t))\) is a smooth real valued function which second derivative is bounded below by a strictly positive constant. Then it is not difficult to prove that if \(\gamma \) is defined on a interval \((a,\infty )\), then \(\lim _{t\rightarrow \infty } \phi (\gamma (t))=\infty \). Analogously \(\lim _{t\rightarrow -\infty } \phi (\gamma (t))=\infty \) whenever \(\gamma \) is defined on a interval \((-\infty ,a)\). But neither of the cases are possible if \(\gamma \) remain forever in U because \(\phi \) is bounded there. Therefore \(\gamma \) must hit \(\partial U\). \(\square \)

According to the construction of the function f give in [13] and mentioned in Remark 4 we have that \(\nabla ^2f(v,v)\ge C\Vert v\Vert _g^2\) in V, where \(V=\bigcup _{i=1}^{k} V_i\). Thus, we ensure that the geodesics find the effective dissipation region, namely \((M\backslash \overline{\Omega }) \cup M_*,\) That is, there are no geodesic “trapped” within the free sets of dissipative effects \(V_i\), for all \(i=1, \ldots , k\). It is worth remembering that \(\Omega \subset \subset \Omega ^*\).

Now we can show that, in fact, the function v given in (4.64) is null in all \(\Omega ^*\). For this we have to show that \(v=0\) in \(V_i\), for all \(i=1, \ldots , k,\) since \((\overline{\Omega ^*} \backslash V) \subset {\mathcal {M}}_*\) and \(v=0\) in \({\mathcal {M}}_*.\)

By (4.64), we have

$$\begin{aligned} \left\{ \begin{array}{ll} {v^{''}-\Delta v +v =0} &{} {in\,\,\,\Omega ^*\times (0,T)} \\ {v=0} &{} {in\,\,\,\partial \Omega ^*}\times (0,T) \\ {v(0)=v_0 \in L^2(\Omega ^*);} &{} {v'(0)=v_1 \in H^{-1}(\Omega ^*),} \end{array}\right. \end{aligned}$$
(6.4)

with \(v=0\) in \((\Omega ^*\backslash \Omega )\cup {\mathcal {M}}_*\).

Now, consider the problems

$$\begin{aligned} \left\{ \begin{array}{ll} {\varphi ^{''}-\Delta \varphi =0} &{} {in\,\,\,\Omega ^*\times (0,T)} \\ {\varphi =0} &{} {in\,\,\,\partial \Omega ^*}\times (0,T) \\ {\varphi (0)=v_0 \in L^2(\Omega ^*);} &{} {\varphi '(0)=v_1 \in H^{-1}(\Omega ^*),} \end{array}\right. \end{aligned}$$
(6.5)

and,

$$\begin{aligned} \left\{ \begin{array}{ll} {z^{''}-\Delta z =-v} &{} {in\,\,\,\Omega ^*\times (0,T)} \\ {z=0} &{} {in\,\,\,\partial \Omega ^*}\times (0,T) \\ {z(0)=z'(0)=0.} \end{array}\right. \end{aligned}$$
(6.6)

Defining \(w= \varphi + z\), we have that w is solution of

$$\begin{aligned} \left\{ \begin{array}{ll} {w^{''}-\Delta w =-v} &{} {in\,\,\,\Omega ^*\times (0,T)} \\ {w=0} &{} {in\,\,\,\partial \Omega ^*}\times (0,T) \\ {w(0)=v_0 \in L^2(\Omega ^*);} &{} {w'(0)=v_1 \in H^{-1}(\Omega ^*),} \end{array}\right. \end{aligned}$$
(6.7)

and, if \(y=v-w\) then y is solution of

$$\begin{aligned} \left\{ \begin{array}{ll} {y^{''}-\Delta y =0} &{} {in\,\,\,\Omega ^*\times (0,T)} \\ {y=0} &{} {in\,\,\,\partial \Omega ^*}\times (0,T) \\ {y(0)=y'(0)=0.} \end{array}\right. \end{aligned}$$
(6.8)

By uniqueness of solution, we conclude that \(y=0\), that is, \(v=w=\varphi +z.\) Note that \(z''-\Delta v= -v =0\) is \((\overline{\Omega ^*}\backslash \Omega )\cup {\mathcal {M}}_*\) with \(z(0)=0=z'(0)\), where it follows that \(z=0\) in \((\overline{\Omega ^*}\backslash \Omega )\cup {\mathcal {M}}_*\), and consequently, \(\varphi =0 \) in \((\overline{\Omega ^*}\backslash \Omega )\cup {\mathcal {M}}_*\).

As \(\varphi =0\) in \({\mathcal {M}}_*\supset \supset \overline{\Omega ^*}\backslash V\) we have that exists an open neighborhood \(\omega _i\) of \(\partial V_i\), with \(\omega _i\subset V_i\), such that \(\varphi =0\) in \(\omega _i.\)

Restricting the problem (6.5) to \(V_i\), follows by (6.2) that

$$\begin{aligned} ||v_0||_{L^2(V_i)}^2 + ||v_1||_{H^{-1}(V_i)} \le C \int _0^T \int _{\omega _i} |\varphi (x,t)|^2\,d{\mathcal {M}}dt, \end{aligned}$$
(6.9)

where it follows that \(v_0=v_1=0\) em \(V_i,\) for all \(i=1, \ldots , k,\) and therefore, by the problem (6.8), we conclude that \(v=0\) in \(V_i,\) for all \(i=1, \ldots , k,\) as we wanted to show. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortot, C.A., Cavalcanti, M.M., Domingos Cavalcanti, V.N. et al. Exponential Asymptotic Stability for the Klein Gordon Equation on Non-compact Riemannian Manifolds. Appl Math Optim 78, 219–265 (2018). https://doi.org/10.1007/s00245-017-9405-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9405-5

Keywords

Navigation