Skip to main content
Log in

Time Optimal Controls of the Lengyel–Epstein Model with Internal Control

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

This paper is concerned with the time optimal control problem governed by the internal controlled Lengyel–Epstein model. We prove the existence of optimal controls. Moreover, we give necessary optimality conditions for an optimal control of our original problem by using one of the approximate problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lengyel, I., Epstein, I.R.: Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science 251, 650 (1991)

    Article  Google Scholar 

  2. Lengyel, I., Rábai, G., Epstein, I.R.: Experimental and modeling study of oscillations in the chlorine dioxide-iodine-malonic acid reaction. J. Am. Chem. Soc. 112, 9104 (1990)

    Article  Google Scholar 

  3. Cuiñs-Váquez, D., Carballido-Landeira, J., Péez-Villar, V., Muñzuri, A.P.: Chaotic behaviour induced by modulated illumination in the Lengyel–Epstein model under Turing considerations. Chaotic Model. Simul. CMSIM. 1, 45–51 (2012)

    Google Scholar 

  4. Yang, L., Epstein, I.R.: Symmetric, asymmetric, and antiphase turing patterns in a model system with two identical coupled layers. Phys. Rev. 69, 026211 (2004)

    Google Scholar 

  5. Feldman, D., Nagao, R., Bánsági Jr, T., Epstein, I.R., Dolnik, M.: Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with square spatial periodic forcing. Phys. Chem. Chem. Phys. 14, 6577–6883 (2012)

    Article  Google Scholar 

  6. Jensen, O., Pannbacker, V.O., Mosekilde, E., Dewel, G., Borckmans, P.: Localized structures and front propagation in the Lengyel–Epstein model. Phys. Rev. E 50, 736 (1994)

    Article  Google Scholar 

  7. Castest, V., Dulos, E., Boissonade, J., De Kepper, P.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953 (1990)

    Article  Google Scholar 

  8. Ouyang, Q., Swinney, H.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610–612 (1991)

    Article  Google Scholar 

  9. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, New York (1993)

    MATH  Google Scholar 

  10. Barbu, V.: The time optimal control of Navier–Stokes equations. Syst. Control Lett. 30, 93–100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cannarsa, P., Carjua, O.: On the Bellman equation for the minimum time problem in infinite dimensions. SIAM. J. Control Optim. 43, 532–548 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fattorini, H.O.: Infinite Dimensional Linear Control Systems: The Time Optimal and Norm Optimal Problems. Elsevier North-Holl and Mathematics Studies, New York (2005)

    Google Scholar 

  13. Fattorini, H.O.: Infinite-Dimensional Optimization and Control Theory. Encyclopaedia of Mathematics and its Applications, vol. 62. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  14. Fernandez, E., Zuazua, E.: The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5, 465–514 (2000)

    MATH  Google Scholar 

  15. Fursikov, A.V., Yu, O.: Imanuvilov, controllability of evolution equations, Lecture Notes Ser. 34. Seoul National University, Korea (1996)

  16. Kunisch, K., Wang, L.: Time optimal controls of the linear Fitzhugh–Nagumo equation with pointwise control constraints. J. Math. Anal. Appl. 395, 114–130 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Raymond, J.P., Zidani, H.: Pontryagin’s principle for time-optimal problems. J. Optim. Theory Appl. 101, 375–402 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, G.: The existence of time optimal control of a semilinear parabolic equations. Syst. Control Lett. 53, 171–175 (2004)

    Article  MATH  Google Scholar 

  19. Wang, L., Wang, G.: The optimal time control of a phase-field system. SIAM J. Control Optim. 42, 1483–1508 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tachim Medjo, T.: Optimal control of the primitive equations of the ocean with state constraints. Nonlinear Anal. 73, 634–649 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Barbu, V.: Optimal control of variational inequalities. In: Pitman Research Notes in Mathematics, London, Boston (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiashan Zheng.

Appendix

Appendix

Let \(Y=H^{2,1}(Q)\cap L^\infty (0,T; V)\) and \((y^{w,v}, z^{w,v})\in Y\times Y\) be the solution to the following linear system

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle {y_t-\triangle y+cy+4\xi z-a+\phi =\chi _\omega v(x, t)~~\hbox {in}~~ Q,}\\ \displaystyle {z_t-\delta \triangle z-b\theta y+\theta \xi z-\theta \phi =\chi _\omega w(x, t)~~~~~\hbox {in}~~ Q,}\\ y(x, 0)=y_0(x),~~ z(x,0)=z_0(x) ~~\hbox {in}~~ \Omega ,\\ y(x, t)=z(x, t)=0~~~~\hbox {on}~~\Sigma \equiv \partial \Omega \times (0,T). \end{array}\right. \end{aligned}$$
(4.1)

For \(\varepsilon > 0\), let \((y_\varepsilon ,z_\varepsilon ,v_\varepsilon ,w_\varepsilon )\) be the optimal for problem

$$\begin{aligned} \min L_\varepsilon (y_\varepsilon ,z_\varepsilon , v_\varepsilon ,w_\varepsilon ) \end{aligned}$$
(4.2)

with

$$\begin{aligned}&L_\varepsilon (y,z, v,w):=\left\{ \frac{1}{2}\int \limits _{Q} e^{-\frac{3}{2}s\alpha }(v^2 + w^2)dxdt \right. \\&\qquad \left. +\frac{1}{2\varepsilon }\int \limits _{\Omega }(y^2(x,T) + z^2(x, T))dx\right\} \hbox {subject to}~(4.1). \end{aligned}$$

Then, we have

$$\begin{aligned} v_\varepsilon =\chi _\omega p_\varepsilon e^{\frac{3}{2}\alpha s}, w_\varepsilon =\chi _\omega q_\varepsilon e^{\frac{3}{2}\alpha s} ~~~\hbox {all most}~~~(x,t)\in Q, \end{aligned}$$
(4.3)

where \((p_\varepsilon , q_\varepsilon )\) is the solution to the dual backward system

$$\begin{aligned} \left\{ \begin{array}{ll} (p_\varepsilon )_t+(\triangle -c)p_\varepsilon +b\theta q_\varepsilon =0~~\hbox {in}~~ Q,\\ (q_\varepsilon )_t+(\delta \triangle -\xi \theta )q_\varepsilon -4\xi p_\varepsilon =0~~~~~\hbox {in}~~ Q,\\ p_\varepsilon (T)=-\dfrac{1}{\varepsilon }y_\varepsilon (T), q_\varepsilon (T)=-\dfrac{1}{\varepsilon }z_\varepsilon (T) ~~\hbox {in}~~ \Omega ,\\ p_\varepsilon (x,t)=q_\varepsilon (x,t)=0~~~~\hbox {on}~~\Sigma . \end{array}\right. \end{aligned}$$
(4.4)

Proof

Let \(\bar{Y}=\{y\in Y,y(0)=0\}\), \((y,\bar{y})\in \bar{Y}\times \bar{Y}\) and \(\chi _\omega v,\chi _\omega w\in L^2(0,T;H)\), setting \(y_\varepsilon ^\lambda =y_\varepsilon +\lambda y,z_\varepsilon ^\lambda =z_\varepsilon +\lambda \bar{z}, v_\varepsilon ^\lambda =v_\varepsilon +\lambda v,w_\varepsilon ^\lambda =w_\varepsilon +\lambda w\), where \((y_\varepsilon ,z_\varepsilon ,v_\varepsilon ,w_\varepsilon )\) is optimal for problem \(L_\varepsilon (y_\varepsilon ,z_\varepsilon , v_\varepsilon ,w_\varepsilon )\). It is clear that \( (y_\varepsilon ^\lambda ,z_\varepsilon ^\lambda ,\chi _\omega v_\varepsilon ^\lambda ,\chi _\omega w_\varepsilon ^\lambda )\in \bar{Y}\times \bar{Y}\times L^2(0,T;H)\times L^2(0,T;H) \) and

$$\begin{aligned} (y_\varepsilon ^\lambda ,z_\varepsilon ^\lambda ,\chi _\omega v_\varepsilon ^\lambda ,\chi _\omega w_\varepsilon ^\lambda )\rightarrow (y_\varepsilon ,z_\varepsilon ,\chi _\omega v_\varepsilon , \chi _\omega w_\varepsilon ),~ \hbox {in}~ Y^2\times (L^2(0,T; H))^2~\hbox {as}~\lambda \rightarrow 0. \end{aligned}$$
(4.5)

It follows from (4.5) that

$$\begin{aligned} \begin{array}{rl} &{}\displaystyle {\frac{1}{2\varepsilon \lambda }\int \limits _{0}^T\left| \frac{dy_\varepsilon ^\lambda }{dt}-\triangle y_\varepsilon ^\lambda +cy_\varepsilon ^\lambda +4\xi z_\varepsilon ^\lambda -a+\phi -\chi _\omega v_\varepsilon ^\lambda \right| _{2}^2dt}\\ &{}\qquad -\displaystyle {\frac{1}{2\varepsilon \lambda }\int \limits _{0}^T\left| \frac{dy_\varepsilon }{dt}-\triangle y_\varepsilon +cy_\varepsilon +4\xi z_\varepsilon -a+\phi -\chi _\omega v_\varepsilon \right| _{2}^2dt}\\ &{}\quad \rightarrow \displaystyle {\int \limits _{0}^T\left\langle \tilde{p}_\varepsilon ,\frac{dy}{dt}-\triangle y+cy+4\xi z-\chi _\omega v\right\rangle dt~~~\hbox {as}~~\lambda \rightarrow 0} \end{array} \end{aligned}$$
(4.6)

and

$$\begin{aligned} \begin{array}{ll} &{}\displaystyle {\frac{1}{2\varepsilon \lambda }\int \limits _{0}^T\left| \frac{dz_{\varepsilon }^\lambda }{dt}-\delta \Delta z_{\varepsilon }^\lambda -b\theta y_{\varepsilon }^\lambda +\theta \xi z_{\varepsilon }^\lambda -\theta \phi -\chi _\omega w_{\varepsilon }^\lambda \right| _{2}^2dt}\\ &{}\qquad -\displaystyle {\frac{1}{2\varepsilon \lambda }\int \limits _{0}^T\left| \frac{dz_{\varepsilon }}{dt}-\delta \triangle z_{\varepsilon }-b\theta y_{\varepsilon }+\theta \xi z_{\varepsilon }-\theta \phi -\chi _\omega w_{\varepsilon }\right| _{2}^2dt}\\ &{}\quad \rightarrow \displaystyle {\int \limits _{0}^T\left\langle \tilde{q}_\varepsilon ,\frac{dz}{dt}-\delta \triangle z-b\theta y+\theta \xi z-\chi _\omega w\right\rangle dt~~~\hbox {as}~~\lambda \rightarrow 0}, \end{array} \end{aligned}$$
(4.7)

where \(\tilde{p}_\varepsilon \) is given by

$$\begin{aligned} \tilde{p}_\varepsilon =\frac{1}{\varepsilon }\left[ \frac{dy_\varepsilon }{dt}-\triangle y_\varepsilon +cy_\varepsilon +4\xi z_\varepsilon -a+\phi -\chi _\omega v_\varepsilon \right] \end{aligned}$$
(4.8)

and \(\tilde{q}_\varepsilon \) is given by

$$\begin{aligned} \tilde{q}_\varepsilon =\frac{1}{\varepsilon }\left[ \frac{dz_{\varepsilon }}{dt}-\delta \triangle z_{\varepsilon }-b\theta y_{\varepsilon }+\theta \xi z_{\varepsilon }-\theta \phi -\chi _\omega w_{\varepsilon }\right] . \end{aligned}$$
(4.9)

Now, employing the same arguments as in the proof of [21], we conclude that

$$\begin{aligned} \lim _{\lambda \rightarrow 0}\frac{1}{2\lambda }\int \limits _Qe^{-\frac{s\alpha }{2}}\Big [(v_\varepsilon ^\lambda )^2+(w_\varepsilon ^\lambda )^2- v_\varepsilon ^2-w_\varepsilon ^2 dx\Big ]dt=\int \limits _Qe^{-\frac{s\alpha }{2}}(v_\varepsilon v+w_\varepsilon w)dxdt \end{aligned}$$
(4.10)
$$\begin{aligned} \begin{array}{rl} &{}\displaystyle \lim _{\lambda \rightarrow 0}\displaystyle {\frac{1}{2\varepsilon \lambda }\int \limits _\Omega (y_\varepsilon ^\lambda )^2(x,T)+ (z_\varepsilon ^\lambda )^2(x,T)-y_\varepsilon ^2(x,T)-z_\varepsilon ^2(x,T)dx}\\ &{}\qquad =\displaystyle {\frac{1}{\varepsilon }\int \limits _\Omega y_\varepsilon (x,T)y(x,T)+z_\varepsilon (x,T)z(x,T)dx}. \end{array} \end{aligned}$$
(4.11)

Let

$$\begin{aligned} ~~~~p_\varepsilon =\tilde{p}_\varepsilon \in L^2(0,T;H),~~q_\varepsilon =\tilde{q}_\varepsilon \in L^2(0,T;H). \end{aligned}$$
(4.12)

By the Pontryagin’s maximum principle, we get

$$\begin{aligned} \displaystyle {\frac{L_\varepsilon (y_\varepsilon ^\lambda ,z_\varepsilon ^\lambda , v_\varepsilon ^\lambda ,w_\varepsilon ^\lambda )-L_\varepsilon (y_\varepsilon ,z_\varepsilon , v_\varepsilon ,w_\varepsilon )}{\lambda }\ge 0}~~~~\hbox {for all}~~~~\lambda >0. \end{aligned}$$

It then follows from (4.8)–(4.12) that for any \((y,z,v,w)\in \bar{Y}\times \bar{Y}\times L^2(0,T; H)\times L^2(0,T; H)\),

$$\begin{aligned} 0&\le \displaystyle {\int \limits _0^T\langle e^{-\frac{s\alpha }{2}}v_\varepsilon ,v\rangle +\langle e^{-\frac{s\alpha }{2}}w_\varepsilon ,w\rangle dt+\frac{1}{\varepsilon }\int \limits _\Omega y_\varepsilon (x,T)y(x,T)+z_\varepsilon (x,T)z(x,T)dx}\nonumber \\&+\displaystyle {\int \limits _{0}^T\left\langle p_\varepsilon ,\frac{dy}{dt}- \triangle y+cy+4\xi z-\chi _\omega v\right\rangle dt}\nonumber \\&+\displaystyle {\int \limits _{0}^T\left\langle q_\varepsilon ,\frac{dz}{dt}-\delta \triangle z-b\theta y+\theta \xi z-\chi _\omega w\right\rangle dt.} \end{aligned}$$
(4.13)

Let \(w=v=y=0\) and \(w=v=z=0\) in (4.13), we have

$$\begin{aligned} e^{-\frac{s\alpha }{2}}w_\varepsilon =q_\varepsilon \chi _\omega w \end{aligned}$$

and

$$\begin{aligned} e^{-\frac{s\alpha }{2}}v_\varepsilon =p_\varepsilon \chi _\omega v, \end{aligned}$$

which imply that

$$\begin{aligned} v_\varepsilon =\chi _\omega p_\varepsilon e^{\frac{3}{2}\alpha s}, w_\varepsilon =\chi _\omega q_\varepsilon e^{\frac{3}{2}\alpha s} ~~~\hbox {all most}~~~(x,t)\in Q. \end{aligned}$$
(4.14)

Now, taking \(w=v=0\) in (4.13), then for any \((y,z)\in \bar{Y}\times \bar{Y}\), we have

$$\begin{aligned} \begin{array}{rl} 0=&{}\displaystyle {\frac{1}{\varepsilon }\int \limits _\Omega y_\varepsilon (x,T)y(x,T)+z_\varepsilon (x,T)z(x,T)dx}\\ &{}+\displaystyle {\int \limits _{0}^T\left\langle p_\varepsilon ,\frac{dy}{dt}-\triangle y+cy+4\xi z\right\rangle dt}\\ &{}+\displaystyle {\int \limits _{0}^T\left\langle q_\varepsilon ,\frac{dz}{dt}-\delta \triangle z-b\theta y+\theta \xi z\right\rangle dt.}\\ \end{array} \end{aligned}$$
(4.15)

Let \((\bar{p}_\varepsilon ,\bar{q}_\varepsilon )\in Y\times Y\) be the unique solution to

$$\begin{aligned} \left\{ \begin{array}{ll} -\displaystyle {\bar{p}_{\varepsilon ,t} -\triangle \bar{p}_\varepsilon +c\bar{p}_\varepsilon -b\theta \bar{q}_\varepsilon = 0},\\ -\displaystyle {\bar{q}_{\varepsilon ,t} -\delta \triangle \bar{q}_\varepsilon + 4\xi \bar{p}_\varepsilon +\xi \theta \bar{q}_\varepsilon = 0},\\ \bar{p}_\varepsilon (T)=-\frac{1}{\varepsilon }y_\varepsilon (T),~~\bar{q}_\varepsilon (T)=-\frac{1}{\varepsilon }z_\varepsilon (T),\\ \bar{p}_\varepsilon (x,t)=\bar{q}_\varepsilon (x,t)=0~~~~\hbox {on}~~\Sigma . \end{array}\right. \end{aligned}$$
(4.16)

Multiplying (4.16)\(_1\) and (4.16)\(_2\) by \(y\) and \(z\), respectively, integrating over \(\Omega \times (0, T)\), we have

$$\begin{aligned} \frac{1}{\varepsilon }\int \limits _\Omega y_\varepsilon (x,T)y(x,T)dx+\int \limits _{0}^T\left\langle \bar{p}_{\varepsilon },\frac{dy}{dt}- \triangle y+cy\right\rangle dt+\int \limits _{0}^T\left\langle \bar{q}_{\varepsilon }, -b\theta y\right\rangle dt=0 \end{aligned}$$
(4.17)

and

$$\begin{aligned} \frac{1}{\varepsilon }\int \limits _\Omega z_\varepsilon (x,T)z(x,T)dx+\int \limits _{0}^T\left\langle \bar{q}_{\varepsilon },\frac{dz}{dt}-\delta \triangle z+\xi \theta z\right\rangle dt+\int \limits _{0}^T\left\langle \bar{p}_{\varepsilon }, 4\xi z\right\rangle dt=0, \end{aligned}$$
(4.18)

which, together with (4.15) imply that

$$\begin{aligned} \displaystyle {\int \limits _{0}^T\left\langle p_{\varepsilon }-\bar{p}_{\varepsilon },\frac{dy}{dt}- \triangle y+cy\right\rangle dt+\int \limits _{0}^T\langle q_{\varepsilon }-\bar{q}_{\varepsilon },-b\theta y\rangle dt=0} \end{aligned}$$
(4.19)

and

$$\begin{aligned} \displaystyle {\int \limits _{0}^T\left\langle q_{\varepsilon }-\bar{q}_{\varepsilon },\frac{dz}{dt}-\delta \triangle z+\xi \theta z\right\rangle dt+\int \limits _{0}^T\langle p_{\varepsilon }-\bar{p}_{\varepsilon },4\xi z\rangle dt=0}, \end{aligned}$$
(4.20)

which imply that

$$\begin{aligned} \begin{array}{ll} &{}\displaystyle {\int \limits _{0}^T\left\langle p_{\varepsilon }-\bar{p}_{\varepsilon },\frac{dy}{dt}- \triangle y+cy+4\xi z\right\rangle dt}\\ &{}\quad +\displaystyle {\int \limits _{0}^T\left\langle q_{\varepsilon }-\bar{q}_{\varepsilon },\frac{dz}{dt}-\delta \triangle z+\xi \theta z-b\theta y\right\rangle dt=0.}\\ \end{array} \end{aligned}$$
(4.21)

It is well known that for each \(f,g\in L^2(0, T; H)\), there exists \((y,z)\in \bar{Y}\times \bar{Y}\) such that

$$\begin{aligned} \left\{ \begin{array}{ll} \ \displaystyle {\frac{dy}{dt}- \triangle y+cy+4\xi z=f~~t\in (0, T),}\\ \displaystyle {\frac{dz}{dt}-\delta \triangle z+\xi \theta z -b\theta y=g~~t\in (0, T)},\\ \end{array}\right. \end{aligned}$$

which, combined with (4.21) implies that \(p_{\varepsilon }=\bar{p}_{\varepsilon },q_{\varepsilon }=\bar{q}_{\varepsilon }\) for almost \(t\in (0, T)\). That is (4.4). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J. Time Optimal Controls of the Lengyel–Epstein Model with Internal Control. Appl Math Optim 70, 345–371 (2014). https://doi.org/10.1007/s00245-014-9263-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-014-9263-3

Keywords

Mathematics Subject Classifications

Navigation