Skip to main content
Log in

Kernel-Correlated Lévy Field Driven Forward Rate and Application to Derivative Pricing

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

We propose a term structure of forward rates driven by a kernel-correlated Lévy random field under the HJM framework. The kernel-correlated Lévy random field is composed of a kernel-correlated Gaussian random field and a centered Poisson random measure. We shall give a criterion to preclude arbitrage under the risk-neutral pricing measure. As applications, an interest rate derivative with general payoff functional is priced under this pricing measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The kernel-correlated Gaussian field is well known in the field of stochastic partial differential equations (SPDEs). In fact its formal (or generalized) derivative is the so-called colored (or spatial-correlated) noise, which have been studied by many authors (see, e.g., Dalang [12], Mytnik, Perkins and Sturm [42] and Dalang and Mueller [13]).

  2. \({\mathcal{D}}(\mathbb{R}^{d+1})\) denotes the topological vector space of functions \(\phi\in C_{0}^{\infty}(\mathbb{R}^{d+1})\) with the topology corresponding to the following: ϕ n ϕ if and only if: (i) there exists a compact set K of ℝd+1 such that the support \({\rm supp}(\phi_{n}-\phi)\subset K\) for all n, and (ii) D α ϕ n D α ϕ uniformly on K for each multi-index α=(α 1,…,α d ).

  3. We generalize the model in [6] by replacing the Wiener process with a kernel-correlated Gaussian random field.

  4. We assume that μ(t,T), σ(ξ,t,T), γ(ξ,t,T) and f 0(T) are “smooth” enough to guarantee that f(t,T) is continuous in the second variable and cadlag in the first one.

  5. This condition is well defined when \(\sigma(\cdot,\cdot,\cdot),\psi(\cdot,\cdot)\in{\mathcal{P}}\) (see (2.2)) and γ(⋅,⋅,⋅),φ(⋅,⋅)∈Ψ (see (2.6)).

  6. For general theory on arbitrage pricing, one may refer to [4, Chap. 15], [15, Chap. 6] or [27].

References

  1. Aihara, S.I., Bagchi, A.: Stochastic hyperbolic dynamics for infinite-dimensional forward rates and option pricing. Math. Finance 15, 27–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Lytvynov, E., Mahnig, A.: A model of the term structure of interest rates based on Lévy fields. Stoch. Process. Appl. 114, 251–263 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakshi, G., Carr, P., Wu, L.: Stochastic risk premiums, stochastic skewness in currency options, and stochastic discount factors in international economies. J. Financ. Econ. 87, 132–156 (2008)

    Article  Google Scholar 

  4. Björk, T.: Arbitrage Theory in Continuous Time. Oxford University Press, Oxford (2009)

    Google Scholar 

  5. Björk, T., Svensson, L.: On the existence of finite dimensional realizations for nonlinear forward rate models. Math. Finance 11, 205–243 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Björk, T., Di Masi, G., Kabanov, Y., Runggaldier, W.: Towards a general theory of bond markets. Finance Stoch. 1(2), 141–174 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Björk, T., Kabanov, Y., Runggaldier, W.: Bond market structure in the presence of marked point processes. Math. Finance 7(2), 211–239 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carr, P., Mayo, A.: On the numerical evaluation of option prices in jump diffusion processes. Quant. Finance 13(4), 353–372 (2007)

    Google Scholar 

  9. Cont, R.: Modeling term structure dynamics: an infinite dimensional approach. Int. J. Theor. Appl. Finance 8(3), 357–380 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cont, R., Voltchkova, E.: Integro-differential equations for option prices in exponential Lévy models. Finance Stoch. 9(3), 299–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53, 385–408 (1985)

    Article  MathSciNet  Google Scholar 

  12. Dalang, R.C.: Extending martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E’s. Electron. J. Probab. 4, 1–29 (1999)

    Article  MathSciNet  Google Scholar 

  13. Dalang, R.C., Mueller, C.: Intermittency properties in a hyperbolic Anderson problem. Ann. Inst. Henri Poincaré Probab. Stat. 45(4), 1150–1164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dalang, R., Khoshnevisan, D., Mueller, C., Nualart, D., Xiao, Y.: A Minicourse on Stochastic Partial Differential Equations. Springer, Berlin (2009)

    Google Scholar 

  15. Duffie, D.: Dynamic Asset Pricing Theory, 3rd edn. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  16. Eberlein, E., Kluge, W.: Valuation of floating range notes in Lévy term structure models. Math. Finance 16, 237–254 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eberlein, E., Özkan, F.: The defaultable Lévy term structure: ratings and restructuring. Math. Finance 13, 277–300 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eberlein, E., Raible, S.: Term structure models driven by general Lévy processes. Math. Finance 9(1), 31–53 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eberlein, E., Jacod, J., Raible, S.: Lévy term structure models: no-arbitrage and completeness. Finance Stoch. 9, 67–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feng, L., Linetsky, V.: Pricing options in jump-diffusion models: an extrapolation approach. Oper. Res. 56(2), 304–325 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Filipović, D.: Consistency Problems for Heath-Jarrow-Morton Interest Rate Models. Lecture Notes in Mathematics, vol. 1760. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  22. Filipović, D.: Term-Structure Models: A Graduate Course. Springer Finance. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  23. Filipović, D., Tappe, S.: Existence of Lévy term structure models. Finance Stoch. 12(1), 83–115 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Filipović, D., Teichmann, J.: Existence of invariant manifolds for stochastic equations in infinite dimension. J. Funct. Anal. 197(2), 398–432 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Filipović, D., Teichmann, J.: On the geometry of the term structure of interest rates. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460(2041), 129–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Filipović, D., Tappe, S., Teichmann, J.: Term structure model driven by Wiener process and Poisson measures: existence and positivity. SIAM J. Financ. Math. 1(1), 523–554 (2010)

    Article  MATH  Google Scholar 

  27. Föllmer, H., Schweizer, M.: Hedging of contingent claims under incomplete information. Rheinische Friedrich-Wilhelms-Universität Bonn, 389–414 (1990)

  28. Goldstein, R.S.: The term structure of interest rates as a random field. Rev. Financ. Stud. 13, 365–384 (2000)

    Article  Google Scholar 

  29. Heath, D.C., Jarrow, R.A., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992)

    Article  MATH  Google Scholar 

  30. Ho, T., Lee, S.: Term structure movements and pricing interest rate contingent claims. J. Finance 41, 1011–1029 (1986)

    Article  Google Scholar 

  31. Hull, J., White, A.: Pricing interest-rate derivative securities. Rev. Financ. Stud. 3, 573–592 (1990)

    Article  Google Scholar 

  32. Ikeda, N., Watanabe, S.N.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  33. Jakubowski, J., Zabczyk, J.: Exponential moments for HJM models with jumps. Finance Stoch. 11, 429–445 (2007)

    Article  MathSciNet  Google Scholar 

  34. Jarrow, A., Madan, D.B.: Option pricing using the term structure of interest rates to hedge systematic discontinuities in asset returns. Math. Finance 5(4), 311–336 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kennedy, D.P.: The term structure of interest rates as a Gaussian random field. Math. Finance 4, 247–258 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kennedy, D.P.: Characterizing Gaussian models of the term structure of interest rates. Math. Finance 7, 107–118 (1997)

    Article  MATH  Google Scholar 

  37. Kimmel, R.L.: Modeling the term structure of interest rates: a new approach. J. Financ. Econ. 72, 143–183 (2004)

    Article  Google Scholar 

  38. Ma, C.: Term structure of interest rates in the presence of Lévy jumps: the HJM approach. Ann. Econ. Finance 4(2), 401–426 (2003)

    Google Scholar 

  39. Ma, C.: Advanced Asset Pricing Theory. Imperial College Press, London (2011)

    Book  Google Scholar 

  40. Marinelli, C.: Local well-posedness of Musiela’s SPDE with Lévy noise. Math. Finance 20(3), 341–363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Musiela, M.: Stochastic PDEs related to term structure models. Preprint (1993)

  42. Mytnik, L., Perkins, E., Sturm, A.: On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients. Ann. Probab. 34(5), 1910–1959 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nunno, G.D.: Random fields evolution: non-anticipating integration and differentiation. Preprint (2002)

  44. Özkan, F., Schmidt, T.: Credit risk with infinite dimensional Lévy processes. Stat. Decis. 23, 281–299 (2005)

    Article  MATH  Google Scholar 

  45. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  46. Santa-Clara, P., Sornette, D.: The dynamics of the forward interest rate curve with stochastic string shocks. Rev. Financ. Stud. 14, 149–185 (2001)

    Article  Google Scholar 

  47. Shirakawa, H.: Interest rate option pricing with Poisson-Gaussian forward rate curve processes. Math. Finance 1(4), 77–94 (1991)

    Article  MATH  Google Scholar 

  48. Shreve, S.E.: Stochastic Calculus for Finance II: Continuous-Times Models. Springer, New York (2004)

    Google Scholar 

  49. Sornette, D.: String formulation of the dynamics of the forward interest rate curve. Eur. Phys. J. B 3, 125–137 (1998)

    Article  Google Scholar 

  50. Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ. 5, 177–188 (1977)

    Article  Google Scholar 

  51. Walsh, J.B.: An Introduction to Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1180, pp. 265–439. Springer, New York (1986)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two reviewers for their valuable comments and suggestions that greatly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Yang.

Additional information

This work was partially supported by the NSF of China (Nos. 11001213, 71201074, 70932003). The research of Bo was also supported by NCET-12-0914. The research of Yang was also supported by the Fundamental Research Funds for the Central Universities (No. 1127011812).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bo, L., Wang, Y. & Yang, X. Kernel-Correlated Lévy Field Driven Forward Rate and Application to Derivative Pricing. Appl Math Optim 68, 21–41 (2013). https://doi.org/10.1007/s00245-013-9196-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-013-9196-2

Keywords

Navigation