Skip to main content
Log in

Pathwise Solutions of the 2-D Stochastic Primitive Equations

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this work we consider a stochastic version of the Primitive Equations (PEs) of the ocean and the atmosphere and establish the existence and uniqueness of pathwise, strong solutions. The analysis employs novel techniques in contrast to previous works (Ewald et al. in Anal. Appl. (Singap.) 5(2):183–198, 2007; Glatt-Holtz and Ziane in Discrete Contin. Dyn. Syst. Ser. B 10(4):801–822, 2008) in order to handle a general class of nonlinear noise structures and to allow for physically relevant boundary conditions. The proof relies on Cauchy estimates, stopping time arguments and anisotropic estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensoussan, A.: Stochastic Navier-Stokes equations. Acta Appl. Math. 38(3), 267–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensoussan, A., Frehse, J.: Local solutions for stochastic Navier Stokes equations. Math. Model. Numer. Anal. 34(2), 241–273 (2000). Special issue for R. Temam’s 60th birthday

    Article  MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Temam, R.: Équations aux dérivées partielles stochastiques non linéaires. I. Israel J. Math. 11, 95–129 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bensoussan, A., Temam, R.: Équations stochastiques du type Navier-Stokes. J. Functional Analysis 13, 195–222 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berner, J., Shutts, G.J., Leutbecher, M., Palmer, T.N.: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ecmwf ensemble prediction system. Journal of the Atmospheric Sciences 66(3), 603–626 (2009)

    Article  Google Scholar 

  6. Breckner, H.: Galerkin approximation and the strong solution of the Navier-Stokes equation. J. Appl. Math. Stochastic Anal. 13(3), 239–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bresch, D., Kazhikhov, A., Lemoine, J.: On the two-dimensional hydrostatic Navier-Stokes equations. SIAM J. Math. Anal. 36(3), 796–814 (2004/05)

    Article  MathSciNet  Google Scholar 

  8. Brzeźniak, Z., Peszat, S.: Strong local and global solutions for stochastic Navier-Stokes equations. In: Infinite Dimensional Stochastic Analysis, Amsterdam, 1999. Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet, vol. 52, pp. 85–98. R. Neth. Acad. Arts Sci., Amsterdam (2000)

    Google Scholar 

  9. Cao, C., Titi, E.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. (2) 166(1), 245–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Capiński, M., Gatarek, D.: Stochastic equations in Hilbert space with application to Navier-Stokes equations in any dimension. J. Funct. Anal. 126(1), 26–35 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cruzeiro, A.B.: Solutions et mesures invariantes pour des équations d’évolution stochastiques du type Navier-Stokes. Exposition. Math. 7(1), 73–82 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Cushman-Roisin, B., Beckers, J.-M.: Introduction to geophysical fluid dynamics: Physical and numerical aspects. To be published by Academic Press (2010)

  13. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  14. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  15. Ewald, B., Penland, C.: Numerical generation of stochastic differential equations in climate models. In: Special Volume on Computational Methods for the Atmosphere and the Oceans. Handbook of Numerical Analysis, vol. 14, pp. 279–306. Elsevier/North-Holland, Amsterdam (2009)

    Google Scholar 

  16. Ewald, B., Petcu, M., Temam, R.: Stochastic solutions of the two-dimensional primitive equations of the ocean and atmosphere with an additive noise. Anal. Appl. (Singap.) 5(2), 183–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flandoli, F.: An introduction to 3d stochastic fluid dynamics. In: SPDE in Hydrodynamic: Recent Progress and Prospects. Lecture Notes in Mathematics, vol. 1942, pp. 51–150. Springer, Berlin (2008)

    Chapter  Google Scholar 

  18. Glatt-Holtz, N., Temam, R.: Cauchy convergence schemes for some nonlinear partial differential equations. Appl. Anal. Special Issue in honor of Prof. V. Solonnikov (to appear)

  19. Glatt-Holtz, N., Ziane, M.: The stochastic primitive equations in two space dimensions with multiplicative noise. Discrete Contin. Dyn. Syst. Ser. B 10(4), 801–822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Glatt-Holtz, N., Ziane, M.: Strong pathwise solutions of the stochastic Navier-Stokes system. Advances in Differential Equations 14(5–6), 567–600 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Glatt-Holtz, N., Temam, R., Tribbia, J.: Some remarks on the role of stochastic parameterization in the equations of the ocean and atmosphere (manuscript in preparation)

  22. Guo, B., Huang, D.: 3d stochastic primitive equations of the large-scale ocean: global well-posedness and attractors. Commun. Math. Phys. 286, 697–723 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics, vol. 714. Springer, Berlin (1979)

    MATH  Google Scholar 

  24. Kobelkov, G.M.: Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations. C. R. Math. Acad. Sci. Paris 343(4), 283–286 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Kobelkov, G.M.: Existence of a solution “in the large” for ocean dynamics equations. J. Math. Fluid Mech. 9(4), 588–610 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kukavica, I., Ziane, M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20(12), 2739–2753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Leslie, D.C., Quarini, G.L.: The application of turbulence theory to the formulation of subgrid modelling procedures. Journal of Fluid Mechanics 91, 65–91 (1979)

    Article  MATH  Google Scholar 

  28. Lions, J.-L., Temam, R., Wang, S.H.: New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5(2), 237–288 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lions, J.-L., Temam, R., Wang, S.H.: On the equations of the large-scale ocean. Nonlinearity 5(5), 1007–1053 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, J.-L., Temam, R., Wang, S.: Models for the coupled atmosphere and ocean (CAO I, II). Comput. Mech. Adv. 1(1), 120 (1993)

    MathSciNet  Google Scholar 

  31. Mason, P.J., Thomson, D.J.: Stochastic backscatter in large-eddy simulations of boundary layers. Journal of Fluid Mechanics 242, 51–78 (1992)

    Article  MATH  Google Scholar 

  32. Mikulevicius, R., Rozovskii, B.L.: Stochastic Navier-Stokes equations for turbulent flows. SIAM J. Math. Anal. 35(5), 1250–1310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mikulevicius, R., Rozovskii, B.L.: Global L 2-solutions of stochastic Navier-Stokes equations. Ann. Probab. 33(1), 137–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin (1982)

    Google Scholar 

  35. Penland, C., Ewald, B.D.: On modelling physical systems with stochastic models: diffusion versus Lévy processes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366(1875), 2457–2476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Penland, C., Sardeshmukh, P.D.: The optimal growth of tropical sea surface temperature anomalies. Journal of Climate 8(8), 1999–2024 (1995)

    Article  Google Scholar 

  37. Petcu, M., Temam, R., Wirosoetisno, D.: Existence and regularity results for the primitive equations in two space dimensions. Commun. Pure Appl. Anal. 3(1), 115–131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Petcu, M., Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. In: Special Volume on Computational Methods for the Atmosphere and the Oceans. Handbook of Numerical Analysis, vol. 14, pp. 577–750. Elsevier, Amsterdam (2008)

    Google Scholar 

  39. Potter, T., Colman, B. (eds.): Handbook of Weather, Climate and Water: Atmospheric Chemistry, Hydrology and Societal Impacts. Wiley, New York (2003)

    Google Scholar 

  40. Potter, T., Colman, B. (eds.): Handbook of Weather, Climate and Water: Dynamics, Climate, Physical Meteorology, Weather Systems and Measurements. Wiley, New York (2003)

    Google Scholar 

  41. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

    MATH  Google Scholar 

  42. Rose, H.A.: Eddy diffusivity, eddy noise and subgrid-scale modelling. Journal of Fluid Mechanics 81, 719–734 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  43. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. AMS/Chelsea, Providence (2001). Reprint of the 1984 edition

    MATH  Google Scholar 

  44. Temam, R., Tribbia, J. (eds.): Computational Methods for the Oceans and the Atmosphere. Special Volume of the Handbook of Numerical Analysis. Elsevier, Amsterdam (2008)

    Google Scholar 

  45. Temam, R., Ziane, M.: Some mathematical problems in geophysical fluid dynamics. In: Handbook of Mathematical Fluid Dynamics, vol. III, pp. 535–657. North-Holland, Amsterdam (2004)

    Google Scholar 

  46. Temam, R., Rousseau, A., Tribbia, J.: Boundary value problems for the inviscid primitive equations in limited domain. In: Special Volume on Computational Methods for the Atmosphere and the Oceans. Handbook of Numerical Analysis, vol. 14, pp. 577–750. Elsevier, Amsterdam (2008)

    Google Scholar 

  47. Trenberth, K. (ed.): Climate System Modeling, 1st edn. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  48. Viot, M.: Solutions faibles d’équations aux dérivées partielles non linéaires. Thèse, Université Pierre et Marie Curie, Paris (1976)

  49. Ziane, M.: Regularity results for Stokes type systems. Appl. Anal. 58(3–4), 263–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zidikheri, M.J., Frederiksen, J.S.: Stochastic subgrid-scale modelling for non-equilibrium geophysical flows. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368(1910), 145–160 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Glatt-Holtz.

Additional information

Dedicated to Alain Bensoussan on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glatt-Holtz, N., Temam, R. Pathwise Solutions of the 2-D Stochastic Primitive Equations. Appl Math Optim 63, 401–433 (2011). https://doi.org/10.1007/s00245-010-9126-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-010-9126-5

Keywords

Navigation